Parallelization scheme for canonical polyadic decomposition of large-scale high-order tensors

被引:3
作者
Boudehane, Abdelhak [1 ]
Albera, Laurent [2 ]
Tenenhaus, Arthur [1 ]
Le Brusquet, Laurent [1 ]
Boyer, Remy [3 ]
机构
[1] Univ Paris Saclay, CNRS, CentraleSupelec, Lab signaux & Syst, F-91190 Gif Sur Yvette, France
[2] Univ Rennes, INSERM, LTSI UMR 1099, F-35000 Rennes, France
[3] Univ Lille 1, Ctr Rech Informat, Signal & Automatique Lille, Villeneuve, France
关键词
High-order; Large-scales; Tensor decomposition; EEG; Parallel computing; EEG SIGNALS; ALGORITHMS;
D O I
10.1016/j.sigpro.2022.108610
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A B S T R A C T Modeling multidimensional data using tensor models, particularly through the Canonical Polyadic (CP) model, can be found in large numbers of timely and important signal-based applications. However, the computational complexity in the case of high-order and large-scale tensors remains a challenge that prevents the implementation of the CP model in practice. While some algorithms in the literature deal with large-scale problems, others target high-order tensors. Nevertheless, these algorithms encounter major issues when both problems are present. In this paper, we propose a parallelizable strategy based on the tensor network theory, to deal simultaneously with both high-order and large-scale problems. We show the usefulness of the proposed strategy in reducing the computation time on a realistic electroencephalography data set.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:11
相关论文
共 29 条
[1]   PARAFAC algorithms for large-scale problems [J].
Anh Huy Phan ;
Cichocki, Andrzej .
NEUROCOMPUTING, 2011, 74 (11) :1970-1984
[2]  
[Anonymous], 2011, All-at-once optimization for coupled matrix and tensor factorizations
[3]   SISSY: An efficient and automatic algorithm for the analysis of EEG sources based on structured sparsity [J].
Becker, H. ;
Albera, L. ;
Comon, P. ;
Nunes, J. -C. ;
Gribonval, R. ;
Fleureau, J. ;
Guillotel, P. ;
Merlet, I. .
NEUROIMAGE, 2017, 157 :157-172
[4]   EEG extended source localization: Tensor-based vs. conventional methods [J].
Becker, H. ;
Albera, L. ;
Comon, P. ;
Haardt, M. ;
Birot, G. ;
Wendling, F. ;
Gavaret, M. ;
Benar, C. G. ;
Merlet, I. .
NEUROIMAGE, 2014, 96 :143-157
[5]   Brain-Source Imaging [J].
Becker, Hanna ;
Albera, Laurent ;
Comon, Pierre ;
Gribonval, Remi ;
Wendling, Fabrice ;
Merlet, Isabelle .
IEEE SIGNAL PROCESSING MAGAZINE, 2015, 32 (06) :100-112
[6]  
Boudehane A, 2019, 2019 IEEE 8TH INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING (CAMSAP 2019), P689, DOI [10.1109/CAMSAP45676.2019.9022462, 10.1109/camsap45676.2019.9022462]
[7]   Evaluation of Algorithms for Intracranial EEG (iEEG) Source Imaging of Extended Sources: Feasibility of Using iEEG Source Imaging for Localizing Epileptogenic Zones in Secondary Generalized Epilepsy [J].
Cho, Jae-Hyun ;
Hong, Seung Bong ;
Jung, Young-Jin ;
Kang, Hoon-Chul ;
Kim, Heung Dong ;
Suh, Minah ;
Jung, Ki-Young ;
Im, Chang-Hwan .
BRAIN TOPOGRAPHY, 2011, 24 (02) :91-104
[8]   Tensor Networks for Dimensionality Reduction and Large-Scale Optimization Part 1 Low-Rank Tensor Decompositions [J].
Cichocki, Andrzej ;
Lee, Namgil ;
Oseledets, Ivan ;
Anh-Huy Phan ;
Zhao, Qibin ;
Mandic, Danilo P. .
FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2016, 9 (4-5) :I-+
[9]   Tensor Decompositions for Signal Processing Applications [J].
Cichocki, Andrzej ;
Mandic, Danilo P. ;
Anh Huy Phan ;
Caiafa, Cesar F. ;
Zhou, Guoxu ;
Zhao, Qibin ;
De Lathauwer, Lieven .
IEEE SIGNAL PROCESSING MAGAZINE, 2015, 32 (02) :145-163
[10]   Tensor decompositions, alternating least squares and other tales [J].
Comon, P. ;
Luciani, X. ;
de Almeida, A. L. F. .
JOURNAL OF CHEMOMETRICS, 2009, 23 (7-8) :393-405