Aligned Carbon Cones in Free-Standing UV-Curable Polymer Composite

被引:13
作者
Knaapila, Matti [1 ]
Hoyer, Henrik [1 ]
Svasand, Eldrid [2 ]
Buchanan, Mark [3 ]
Skjeltorp, Arne T. [1 ,4 ]
Helgesen, Geir [1 ,4 ]
机构
[1] Inst Energy Technol, Dept Phys, NO-2027 Kjeller, Norway
[2] Univ Tecn Federico Santa Maria, Dept Fis, CL-1680 Valparaiso, Chile
[3] Condalign AS, NO-2027 Kjeller, Norway
[4] Univ Oslo, Dept Phys, NO-0316 Oslo, Norway
关键词
adhesives; composites; conductive network; epoxy resin; orientation; NANOTUBES; ALIGNMENT; NANOCONES; DIELECTROPHORESIS; DISPERSION; ARRAYS;
D O I
10.1002/polb.22198
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
A concept where an alternating electric field (dielectrophoresis) is used to assemble and align carbon nanocone particles (CNCs) into microscopic wires in self-supporting polymer films is demonstrated. The particle fraction is kept low (one-tenth of the percolation threshold of isotropic mixture), which allows uniform dispersion and efficient UV curing. The alignment leads to the conductivity enhancement of three to four orders of magnitude (from similar to 10(-7) to similar to 10(-3) S/m) in the alignment direction. It does not require passing current so the material can be isolated from the alignment electrodes. This prevents electrodes attaching to the film, if the film is adhesive in nature. The alignment can be done using either in-plane or out-of-plane geometries. It is proposed that this concept could be applied in areas such as electrostatic discharge applications where inexpensive conductive or dissipative materials and macroscopic uniformity are prerequisites. (C) 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 399-403, 2011
引用
收藏
页码:399 / 403
页数:5
相关论文
共 32 条
[1]   Polymers with aligned carbon nanotubes: Active composite materials [J].
Ahir, S. V. ;
Huang, Y. Y. ;
Terentjev, E. M. .
POLYMER, 2008, 49 (18) :3841-3854
[2]   Dendrimer-Assisted Self-Assembled Monolayer of Iron Nanoparticles for Vertical Array Carbon Nanotube Growth [J].
Alvarez, Noe T. ;
Orbaek, Alvin ;
Barron, Andrew R. ;
Tour, James M. ;
Hauge, Robert H. .
ACS APPLIED MATERIALS & INTERFACES, 2010, 2 (01) :15-18
[3]   Claromatic Carbon Nanostructures [J].
Balaban, Alexandru T. ;
Klein, Douglas J. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (44) :19123-19133
[4]   Electrostatic spray painting of carbon fibre-reinforced epoxy composites [J].
Barletta, Massimiliano ;
Gisario, Annamaria .
PROGRESS IN ORGANIC COATINGS, 2009, 64 (04) :339-349
[5]   Effects of nanotube alignment and measurement direction on percolation resistivity in single-walled carbon nanotube films [J].
Behnam, Ashkan ;
Guo, Jing ;
Ural, Ant .
JOURNAL OF APPLIED PHYSICS, 2007, 102 (04)
[6]   Continuous carbon nanotube reinforced composites [J].
Ci, L. ;
Suhr, J. ;
Pushparaj, V. ;
Zhang, X. ;
Ajayan, P. M. .
NANO LETTERS, 2008, 8 (09) :2762-2766
[7]   Measurement and tailoring of composite electrical properties [J].
Czepiela, SA ;
McManus, HL ;
Hastings, D .
JOURNAL OF SPACECRAFT AND ROCKETS, 2000, 37 (05) :561-566
[8]   Frequency dependence of the structure and electrical behaviour of carbon nanotube networks assembled by dielectrophoresis [J].
Dimaki, M ;
Boggild, P .
NANOTECHNOLOGY, 2005, 16 (06) :759-763
[9]   A transmission electron microscope and electron diffraction study of carbon nanodisks [J].
Garberg, Torgunn ;
Naess, Stine Nalum ;
Helgesen, Geir ;
Knudsen, Kenneth D. ;
Kopstad, Gunnar ;
Elgsaeter, Arnljot .
CARBON, 2008, 46 (12) :1535-1543
[10]   Polymer-mediated alignment of carbon nanotubes under high magnetic fields [J].
Garmestani, H ;
Al-Haik, MS ;
Dahmen, K ;
Tannenbaum, R ;
Li, DS ;
Sablin, SS ;
Hussaini, MY .
ADVANCED MATERIALS, 2003, 15 (22) :1918-+