Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes

被引:410
作者
Li, Zhengqi [1 ]
Niklaus, Simon [2 ]
Snavely, Noah [1 ]
Wang, Oliver [2 ]
机构
[1] Cornell Tech, New York, NY 10044 USA
[2] Adobe Res, San Jose, CA USA
来源
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021 | 2021年
关键词
INTERPOLATION;
D O I
10.1109/CVPR46437.2021.00643
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a method to perform novel view and time synthesis of dynamic scenes, requiring only a monocular video with known camera poses as input. To do this, we introduce Neural Scene Flow Fields, a new representation that models the dynamic scene as a time-variant continuous function of appearance, geometry, and 3D scene motion. Our representation is optimized through a neural network to fit the observed input views. We show that our representation can be used for varieties of in-the-wild scenes, including thin structures, view-dependent effects, and complex degrees of motion. We conduct a number of experiments that demonstrate our approach significantly outperforms recent monocular view synthesis methods, and show qualitative results of space-time view synthesis on a variety of real-world videos.
引用
收藏
页码:6494 / 6504
页数:11
相关论文
共 85 条
[1]   4D Visualization of Dynamic Events from Unconstrained Multi-View Videos [J].
Bansal, Aayush ;
Vo, Minh ;
Sheikh, Yaser ;
Ramanan, Deva ;
Narasimhan, Srinivasa .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, :5365-5374
[2]   Depth-Aware Video Frame Interpolation [J].
Bao, Wenbo ;
Lai, Wei-Sheng ;
Ma, Chao ;
Zhang, Xiaoyun ;
Gao, Zhiyong ;
Yang, Ming-Hsuan .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :3698-3707
[3]   X-Fields: Implicit Neural View-, Light- and Time-Image Interpolation [J].
Bemana, Mojtaba ;
Myszkowski, Karol ;
Seidel, Hans-Peter ;
Ritschel, Tobias .
ACM TRANSACTIONS ON GRAPHICS, 2020, 39 (06)
[4]  
Bi S., 2020, ARXIV
[5]   Deep Reflectance Volumes: Relightable Reconstructions from Multi-view Photometric Images [J].
Bi, Sai ;
Xu, Zexiang ;
Sunkavalli, Kalyan ;
Hasan, Milos ;
Hold-Geoffroy, Yannick ;
Kriegman, David ;
Ramamoorthi, Ravi .
COMPUTER VISION - ECCV 2020, PT III, 2020, 12348 :294-311
[6]   Deep 3D Capture: Geometry and Reflectance from Sparse Multi-View Images [J].
Bi, Sai ;
Xu, Zexiang ;
Sunkavalli, Kalyan ;
Kriegman, David ;
Ramamoorthi, Ravi .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, :5959-5968
[7]   DeepDeform: Learning Non-rigid RGB-D Reconstruction with Semi-supervised Data [J].
Bozic, Aljaz ;
Zollhofer, Michael ;
Theobalt, Christian ;
Niessner, Matthias .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, :7000-7010
[8]   Mono-SF: Multi-View Geometry Meets Single-View Depth for Monocular Scene Flow Estimation of Dynamic Traffic Scenes [J].
Brickwedde, Fabian ;
Abraham, Steffen ;
Mester, Rudolf .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :2780-2790
[9]   Immersive Light Field Video with a Layered Mesh Representation [J].
Broxton, Michael ;
Flynn, John ;
Overbeck, Ryan ;
Erickson, Daniel ;
Hedman, Peter ;
Duvall, Matthew ;
Dourgarian, Jason ;
Busch, Jay ;
Whalen, Matt ;
Debevec, Paul .
ACM TRANSACTIONS ON GRAPHICS, 2020, 39 (04)
[10]  
Broxton Michael, 2019, SIGGRAPH ASIA 2019 P