Microenvironment Engineering for the Electrocatalytic CO2 Reduction Reaction

被引:134
|
作者
Lv, Jing-Jing [1 ]
Yin, Ruonan [1 ]
Zhou, Limin [1 ]
Li, Jun [1 ]
Kikas, Reddu [2 ]
Xu, Ting [1 ]
Wang, Zheng-Jun [1 ]
Jin, Huile [1 ]
Wang, Xin [2 ]
Wang, Shun [1 ]
机构
[1] Wenzhou Univ, Inst New Mat & Ind Technol, Key Lab Carbon Mat Zhejiang Prov, Wenzhou 325035, Zhejiang, Peoples R China
[2] Nanyang Technol Univ, Sch Chem & Biomed Engn, 62 Nanyang Dr, Singapore 637459, Singapore
基金
中国国家自然科学基金;
关键词
Electrochemical CO2 Reduction Reaction; Microenvironment Engineering; Product Selectivity; CARBON-DIOXIDE REDUCTION; GAS-DIFFUSION ELECTRODE; EFFICIENCY ELECTROCHEMICAL REDUCTION; SINGLE-ATOM CATALYSTS; HIGHLY-EFFICIENT; MICROBIAL ELECTROSYNTHESIS; IONIC-LIQUID; COPPER ELECTRODES; RATIONAL DESIGN; CURRENT-DENSITY;
D O I
10.1002/anie.202207252
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Rather than just focusing on the catalyst itself in the electrocatalytic CO2 reduction reaction (eCO(2)RR), as previously reviewed elsewhere, we herein extend the discussion to the special topic of the microenvironment around the electrocatalytic center and present a comprehensive overview of recent research progress. We categorize the microenvironment based on the components relevant to electrocatalytic active sites, i.e., the catalyst surface, substrate, co-reactants, electrolyte, membrane, and reactor. Supported by most of the reported articles, the relevant factors affecting the catalytic performance of eCO(2)RR are then discussed in detail, and existing challenges and potential solutions are mentioned. Perspectives for the future research on eCO(2)RR, including the integration of different microenvironment factors, the extension to industrial application by coupling with carbon capture and conversion, and separation of products, are also discussed.
引用
收藏
页数:24
相关论文
共 50 条
  • [31] Bimetallic chalcogenides for electrocatalytic CO2 reduction
    Qian Li
    Yu-Chao Wang
    Jian Zeng
    Xin Zhao
    Chen Chen
    Qiu-Mei Wu
    Li-Miao Chen
    Zhi-Yan Chen
    Yong-Peng Lei
    RareMetals, 2021, 40 (12) : 3442 - 3453
  • [32] ELECTROCATALYTIC REDUCTION OF CO2 BY ASSOCIATIVE ACTIVATION
    BRUCE, MRM
    MEGEHEE, E
    SULLIVAN, BP
    THORP, H
    OTOOLE, TR
    DOWNARD, A
    MEYER, TJ
    ORGANOMETALLICS, 1988, 7 (01) : 238 - 240
  • [33] Defective graphene for electrocatalytic CO2 reduction
    Han, Peng
    Yu, Xiaomin
    Yuan, Di
    Kuang, Min
    Wang, Yifei
    Al-Enizi, Abdullah M.
    Zheng, Gengfeng
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2019, 534 : 332 - 337
  • [34] CO2 reduction: the quest for electrocatalytic materials
    Khezri, Bahareh
    Fisher, Adrian C.
    Pumera, Martin
    JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (18) : 8230 - 8246
  • [35] Electrocatalytic CO2 reduction in acidic medium
    Hao, Qi
    Liu, Dong-Xue
    Zhong, Hai-Xia
    Tang, Qi
    Yan, Jun-Min
    CHEM CATALYSIS, 2023, 3 (03):
  • [36] Electrocatalytic reduction of low concentration CO2
    Kumagai, Hiromu
    Nishikawa, Tetsuya
    Koizumi, Hiroki
    Yatsu, Taiki
    Sahara, Go
    Yamazaki, Yasuomi
    Tamaki, Yusuke
    Ishitani, Osamu
    CHEMICAL SCIENCE, 2019, 10 (06) : 1597 - 1606
  • [37] Bimetallic chalcogenides for electrocatalytic CO2 reduction
    Li, Qian
    Wang, Yu-Chao
    Zeng, Jian
    Zhao, Xin
    Chen, Chen
    Wu, Qiu-Mei
    Chen, Li-Miao
    Chen, Zhi-Yan
    Lei, Yong-Peng
    RARE METALS, 2021, 40 (12) : 3442 - 3453
  • [38] Experimental Considerations for Electrocatalytic CO2 Reduction
    Marshall, A. T.
    Lim, C. F. C.
    Ahangari, H. Taleshi
    Harrington, D. A.
    SELECTED PROCEEDINGS FROM THE 232ND ECS MEETING, 2017, 80 (10): : 1191 - 1201
  • [39] Nanoporous materials for electrocatalytic CO2 reduction
    Jiao, Feng
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 248
  • [40] Alloy Catalysts for Electrocatalytic CO2 Reduction
    Liu, Lizhen
    Akhoundzadeh, Hossein
    Li, Mingtao
    Huang, Hongwei
    SMALL METHODS, 2023, 7 (09):