Stationary distribution of a chemostat model with distributed delay and stochastic perturbations

被引:13
作者
Gao, Miaomiao [1 ]
Jiang, Daqing [2 ,3 ]
机构
[1] Qingdao Univ, Sch Math & Stat, Qingdao 266071, Peoples R China
[2] China Univ Petr East China, Coll Sci, Qingdao 266580, Peoples R China
[3] King Abdulaziz Univ, Dept Math, Nonlinear Anal & Appl Math NAAM Res GRP, Jeddah 21589, Saudi Arabia
基金
中国国家自然科学基金;
关键词
Food chain chemostat model; Distributed delay; Stochastic perturbations; Stationary distribution; BEHAVIOR;
D O I
10.1016/j.aml.2021.107585
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a Lotka-Volterra food chain chemostat model that incorporates both distributed delay and stochastic perturbations. We obtain sufficient conditions for the existence of stationary distribution by constructing suitable Lyapunov functions. Stationary distribution indicates the two species in the chemostat can coexist in the long term. (C) 2021 Published by Elsevier Ltd.
引用
收藏
页数:7
相关论文
共 13 条
[1]   Study of chaotic behavior in predator-prey interactions in a chemostat [J].
Ali, Emad ;
Asif, Mohammed ;
Ajbar, AbdelHamid .
ECOLOGICAL MODELLING, 2013, 259 :10-15
[2]   MODELING AND ANALYSIS OF RANDOM AND STOCHASTIC INPUT FLOWS IN THE CHEMOSTAT MODEL [J].
Caraballo, Tomas ;
Garrido-Atienza, Maria-Jose ;
Lopez-de-la-Cruz, Javier ;
Rapaport, Alain .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2019, 24 (08) :3591-3614
[3]  
Cavani M., 2009, ELECT J DIFFERENTIAL, V76, P2747
[4]   The operating diagram of a model of two competitors in a chemostat with an external inhibitor [J].
Dellal, Mohamed ;
Lakrib, Mustapha ;
Sari, Tewfik .
MATHEMATICAL BIOSCIENCES, 2018, 302 :27-45
[5]   Threshold behavior of a stochastic Lotka-Volterra food chain chemostat model with jumps [J].
Gao, Miaomiao ;
Jiang, Daqing ;
Hayat, Tasawar ;
Alsaedi, Ahmed .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2019, 523 :191-203
[6]   Multigroup SIR epidemic model with stochastic perturbation [J].
Ji, Chunyan ;
Jiang, Daqing ;
Shi, Ningzhong .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2011, 390 (10) :1747-1762
[7]  
Khasminskii RZ, 1980, Stochastic stability of differential equations, V7
[8]   COMPETITIVE EXCLUSION IN DELAYED CHEMOSTAT MODELS WITH DIFFERENTIAL REMOVAL RATES [J].
Liu, Shengqiang ;
Wang, Xinxin ;
Wang, Lin ;
Song, Haitao .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2014, 74 (03) :634-648
[9]  
Renshaw Eric, 1993, Modelling biological populations in space and time
[10]   Asymptotic behavior of a Lotka-Volterra food chain stochastic model in the Chemostat [J].
Sun, Mingjuan ;
Dong, Qinglai ;
Wu, Jing .
STOCHASTIC ANALYSIS AND APPLICATIONS, 2017, 35 (04) :645-661