Chromatin-accessibility estimation from single-cell ATAC-seq data with scOpen

被引:51
|
作者
Li, Zhijian [1 ]
Kuppe, Christoph [2 ,3 ]
Ziegler, Susanne [2 ]
Cheng, Mingbo [1 ]
Kabgani, Nazanin [2 ]
Menzel, Sylvia [2 ]
Zenke, Martin [4 ,5 ]
Kramann, Rafael [2 ,3 ,6 ]
Costa, Ivan G. [1 ]
机构
[1] Rhein Westfal TH Aachen, Joint Res Ctr Computat Biomed, Inst Computat Genom, Med Sch, D-52074 Aachen, Germany
[2] Rhein Westfal TH Aachen, Med Sch, Inst Expt Med & Syst Biol, D-52074 Aachen, Germany
[3] Rhein Westfal TH Aachen, Div Nephrol & Clin Immunol, D-52074 Aachen, Germany
[4] Rhein Westfal TH Aachen, Inst Biomed Engn, Med Sch, Dept Cell Biol, D-52074 Aachen, Germany
[5] Rhein Westfal TH Aachen, Helmholtz Inst Biomed Engn, Aachen, Germany
[6] Erasmus MC, Dept Internal Med Nephrol & Transplantat, NL-3015 GD Rotterdam, Netherlands
基金
欧洲研究理事会;
关键词
KIDNEY INJURY; MATRIX;
D O I
10.1038/s41467-021-26530-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
scATAC-Seq yields data that is extremely sparse. Here, the authors present a computationally efficient imputation method called scOpen that improves the downstream analyses of scATAC-Seq data and use it to identify transcriptional regulators of kidney fibrosis. A major drawback of single-cell ATAC-seq (scATAC-seq) is its sparsity, i.e., open chromatin regions with no reads due to loss of DNA material during the scATAC-seq protocol. Here, we propose scOpen, a computational method based on regularized non-negative matrix factorization for imputing and quantifying the open chromatin status of regulatory regions from sparse scATAC-seq experiments. We show that scOpen improves crucial downstream analysis steps of scATAC-seq data as clustering, visualization, cis-regulatory DNA interactions, and delineation of regulatory features. We demonstrate the power of scOpen to dissect regulatory changes in the development of fibrosis in the kidney. This identifies a role of Runx1 and target genes by promoting fibroblast to myofibroblast differentiation driving kidney fibrosis.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Chromatin-accessibility estimation from single-cell ATAC-seq data with scOpen
    Zhijian Li
    Christoph Kuppe
    Susanne Ziegler
    Mingbo Cheng
    Nazanin Kabgani
    Sylvia Menzel
    Martin Zenke
    Rafael Kramann
    Ivan G. Costa
    Nature Communications, 12
  • [2] Chromatin accessibility profiling by ATAC-seq
    Grandi, Fiorella C.
    Modi, Hailey
    Kampman, Lucas
    Corces, M. Ryan
    NATURE PROTOCOLS, 2022, 17 (06) : 1518 - 1552
  • [3] Chromatin accessibility profiling by ATAC-seq
    Fiorella C. Grandi
    Hailey Modi
    Lucas Kampman
    M. Ryan Corces
    Nature Protocols, 2022, 17 : 1518 - 1552
  • [4] A plate-based single-cell ATAC-seq workflow for fast and robust profiling of chromatin accessibility
    Wei Xu
    Yi Wen
    Yingying Liang
    Qiushi Xu
    Xuefei Wang
    Wenfei Jin
    Xi Chen
    Nature Protocols, 2021, 16 : 4084 - 4107
  • [5] A plate-based single-cell ATAC-seq workflow for fast and robust profiling of chromatin accessibility
    Xu, Wei
    Wen, Yi
    Liang, Yingying
    Xu, Qiushi
    Wang, Xuefei
    Jin, Wenfei
    Chen, Xi
    NATURE PROTOCOLS, 2021, 16 (08) : 4084 - 4107
  • [6] Decoding cell replicational age from single-cell ATAC-seq data
    Xiao, Yu
    Zhang, Yi
    NATURE BIOTECHNOLOGY, 2024,
  • [7] Single-cell ATAC-seq: strength in numbers
    Pott, Sebastian
    Lieb, Jason D.
    GENOME BIOLOGY, 2015, 16
  • [8] Single-cell ATAC-seq: strength in numbers
    Sebastian Pott
    Jason D. Lieb
    Genome Biology, 16
  • [9] Single-cell ATAC-seq maps the comprehensive and dynamic chromatin accessibility landscape of CAR-T cell dysfunction
    Jiang, Penglei
    Zhang, Zhaoru
    Hu, Yongxian
    Liang, Zuyu
    Han, Yingli
    Li, Xia
    Zeng, Xin
    Zhang, Hao
    Zhu, Meng
    Dong, Jian
    Huang, He
    Qian, Pengxu
    LEUKEMIA, 2022, 36 (11) : 2656 - 2668
  • [10] Single-cell ATAC-seq maps the comprehensive and dynamic chromatin accessibility landscape of CAR-T cell dysfunction
    Penglei Jiang
    Zhaoru Zhang
    Yongxian Hu
    Zuyu Liang
    Yingli Han
    Xia Li
    Xin Zeng
    Hao Zhang
    Meng Zhu
    Jian Dong
    He Huang
    Pengxu Qian
    Leukemia, 2022, 36 : 2656 - 2668