Fast algorithm for nonlocal Allen-Cahn equation with scalar auxiliary variable approach

被引:8
|
作者
Yao, Changhui [1 ]
Fan, Huijun [1 ]
Zhao, Yanmin [2 ]
Shi, Yanhua [2 ]
Wang, Fenling [2 ]
机构
[1] Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Peoples R China
[2] Xuchang Univ, Sch Sci, Xuchang 461000, Peoples R China
基金
中国国家自然科学基金;
关键词
Nonlocal Allen-Cahn equation; SAV approach; Energy stable; Fast algorithm; SCHEME;
D O I
10.1016/j.aml.2021.07805
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Numerical analysis is presented for the nonlocal Allen-Cahn equation, which contains spatial nonlocal operator and time-fractional derivative. By employing the spatial quadrature-based finite difference method and the nonuniform L1 formula jointed with the scalar auxiliary variable (SAV) approach in temporal discretization, a nonuniform numerical scheme is established. The nonlinear solver can be transformed into linear one effectively due to the SAV approach. And, the proposed scheme is proven to be energy stable by use of the positive definiteness of the kernel function. Moreover, the fast algorithm based on the nonuniform L1 formula is applied in the numerical example to improving computational efficiency. Finally, the numerical results demonstrate the temporal convergence of numerical scheme, energy property, comparisons with the nonlocal cases and local cases and maximum principle of the numerical solution. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Numerical solutions of the Allen-Cahn equation with the p-Laplacian
    Lee, Dongsun
    Lee, Chaeyoung
    APPLIED MATHEMATICS AND COMPUTATION, 2022, 434
  • [22] An explicit stable finite difference method for the Allen-Cahn equation
    Lee, Chaeyoung
    Choi, Yongho
    Kim, Junseok
    APPLIED NUMERICAL MATHEMATICS, 2022, 182 : 87 - 99
  • [23] Unconditionally stable algorithm with unique solvability for image inpainting using a penalized Allen-Cahn equation
    Su, Sheng
    Yang, Junxiang
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2025, 142
  • [24] A two-level finite element method for the Allen-Cahn equation
    Liu, Qingfang
    Zhang, Ke
    Wang, Zhiheng
    Zhao, Jiakun
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2019, 96 (01) : 158 - 169
  • [25] A conservative Allen-Cahn equation with a curvature-dependent Lagrange multiplier
    Kwak, Soobin
    Yang, Junxiang
    Kim, Junseok
    APPLIED MATHEMATICS LETTERS, 2022, 126
  • [26] Analytical and numerical dissipativity for the space-fractional Allen-Cahn equation
    Wang, Wansheng
    Huang, Yi
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2023, 207 : 80 - 96
  • [27] An explicit numerical method for the conservative Allen-Cahn equation on a cubic surface
    Hwang, Youngjin
    Jyoti
    Kwak, Soobin
    Kim, Hyundong
    Kim, Junseok
    AIMS MATHEMATICS, 2024, 9 (12): : 34447 - 34465
  • [28] The time-fractional Allen-Cahn equation on geometric computational domains
    Lee, Dongsun
    Kim, Hyunju
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2025, 141
  • [29] A fourth-order finite difference method for the Allen-Cahn equation
    Ham, Seokjun
    Kang, Seungyoon
    Hwang, Youngjin
    Lee, Gyeonggyu
    Kwak, Soobin
    Jyoti
    Kim, Junseok
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2025, 453
  • [30] A Gradient Bound for the Allen-Cahn Equation Under Almost Ricci Solitons
    Hajiaghasi, Sakineh
    Azami, Shahroud
    SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2024, 21 (01): : 83 - 98