ON STABLE CONSTANT MEAN CURVATURE HYPERSURFACES

被引:3
作者
Fu, Hai-Ping [1 ]
Li, Zhen-Qi [1 ]
机构
[1] Nanchang Univ, Dept Math, Nanchang 330047, Peoples R China
基金
中国国家自然科学基金;
关键词
Stable hypersurface; L(2) harmonic forms; constant mean curvature; harmonic map; ends; L-2; HARMONIC; 1-FORMS; MINIMAL HYPERSURFACES; COMPLETE SUBMANIFOLDS; RIEMANNIAN-MANIFOLDS; EUCLIDEAN-SPACE; FINITE INDEX; STABILITY; SURFACES; RN+1;
D O I
10.2748/tmj/1287148618
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study complete non-compact stable constant mean curvature hypersurfaces in a Riemannian manifold of bounded geometry, and prove that there are no nontrivial L(2) harmonic 1-forms on such hypersurfaces. We also show that any smooth map with finite energy from such a hypersurface to a compact manifold with non-positive sectional curvature is homotopic to constant on each compact set. In particular, we obtain some one-end theorems of complete non-compact weakly stable constant mean curvature hypersurfaces in the space forms.
引用
收藏
页码:383 / 392
页数:10
相关论文
共 23 条
[1]  
ANDERSON MT, 1986, 91125 DEP MATH CAL I
[2]  
[Anonymous], ARXIV07043194V1
[3]   STABILITY OF HYPERSURFACES OF CONSTANT MEAN-CURVATURE IN RIEMANNIAN-MANIFOLDS [J].
BARBOSA, JL ;
DOCARMO, M ;
ESCHENBURG, J .
MATHEMATISCHE ZEITSCHRIFT, 1988, 197 (01) :123-138
[4]   STABILITY OF HYPERSURFACES WITH CONSTANT MEAN-CURVATURE [J].
BARBOSA, JL ;
DOCARMO, M .
MATHEMATISCHE ZEITSCHRIFT, 1984, 185 (03) :339-353
[5]  
Cao HD, 1997, MATH RES LETT, V4, P637
[6]   L2 harmonic forms and stability of hypersurfaces with constant mean curvature [J].
Cheng, X .
BOLETIM DA SOCIEDADE BRASILEIRA DE MATEMATICA, 2000, 31 (02) :225-239
[7]   On constant mean curvature hypersurfaces with finite index [J].
Cheng, X .
ARCHIV DER MATHEMATIK, 2006, 86 (04) :365-374
[8]   The structure of weakly stable constant mean curvature hypersurfaces [J].
Cheng, Xu ;
Cheung, Leung-Fu ;
Zhou, Detang .
TOHOKU MATHEMATICAL JOURNAL, 2008, 60 (01) :101-121
[9]   STABILITY OF COMPLETE NONCOMPACT SURFACES WITH CONSTANT MEAN-CURVATURE [J].
DASILVEIRA, AM .
MATHEMATISCHE ANNALEN, 1987, 277 (04) :629-638
[10]   STABLE COMPLETE MINIMAL SURFACES IN R3 ARE PLANES [J].
DOCARMO, M ;
PENG, CK .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1979, 1 (06) :903-906