Random Geometric Complexes

被引:87
作者
Kahle, Matthew [1 ]
机构
[1] Inst Adv Study, Sch Math, Princeton, NJ 08540 USA
关键词
Random geometric graphs; Probabilistic topology; Topological data analysis; HOMOLOGICAL CONNECTIVITY; TOPOLOGY; PERSISTENCE;
D O I
10.1007/s00454-010-9319-3
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study the expected topological properties of ech and Vietoris-Rips complexes built on random points in a"e (d) . We find higher-dimensional analogues of known results for connectivity and component counts for random geometric graphs. However, higher homology H (k) is not monotone when k > 0. In particular, for every k > 0, we exhibit two thresholds, one where homology passes from vanishing to nonvanishing, and another where it passes back to vanishing. We give asymptotic formulas for the expectation of the Betti numbers in the sparser regimes, and bounds in the denser regimes.
引用
收藏
页码:553 / 573
页数:21
相关论文
共 29 条
  • [1] Alon N, 2008, WILEY INTERSCIENCE S
  • [2] [Anonymous], 2003, OXFORD STUDIES PROBA
  • [3] THE FUNDAMENTAL GROUP OF RANDOM 2-COMPLEXES
    Babson, Eric
    Hoffman, Christopher
    Kahle, Matthew
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 24 (01) : 1 - 28
  • [4] BARISHNOKOV Y, 2009, COMMUNICATION AUG
  • [5] Bjorner A., 1995, HDB COMBINATORICS, V2, P1819
  • [6] Clique Percolation
    Bollobas, Bela
    Riordan, Oliver
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2009, 35 (03) : 294 - 322
  • [7] A statistical approach to persistent homology
    Bubenik, Peter
    Kim, Peter T.
    [J]. HOMOLOGY HOMOTOPY AND APPLICATIONS, 2007, 9 (02) : 337 - 362
  • [8] Bubenik P, 2010, CONTEMP MATH, V516, P75
  • [9] TOPOLOGY AND DATA
    Carlsson, Gunnar
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 46 (02) : 255 - 308
  • [10] Vietoris-Rips Complexes of Planar Point Sets
    Chambers, Erin W.
    de Silva, Vin
    Erickson, Jeff
    Ghrist, Robert
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2010, 44 (01) : 75 - 90