机构:
Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, Italy
Univ Roma La Sapienza, Dipartimento SBAI, Via Antonio Scarpa 16, I-00161 Rome, ItalyUniv Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, Italy
D'Aprile, Teresa
[1
,2
]
Pistoia, Angela
论文数: 0引用数: 0
h-index: 0
机构:
Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, Italy
Univ Roma La Sapienza, Dipartimento SBAI, Via Antonio Scarpa 16, I-00161 Rome, ItalyUniv Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, Italy
Pistoia, Angela
[1
,2
]
Ruiz, David
论文数: 0引用数: 0
h-index: 0
机构:
Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, Italy
Dept Anal Matemat, Granada 18071, SpainUniv Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, Italy
Ruiz, David
[1
,3
]
机构:
[1] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, Italy
[2] Univ Roma La Sapienza, Dipartimento SBAI, Via Antonio Scarpa 16, I-00161 Rome, Italy
Toda system;
Blowing-up solutions;
Finite-dimensional reduction;
ANALYTIC ASPECTS;
EXISTENCE RESULT;
BEHAVIOR;
EQUATION;
D O I:
10.1016/j.jfa.2016.04.007
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We consider the so-called Toda system in a smooth planar domain under homogeneous Dirichlet boundary conditions. We prove the existence of a continuum of solutions for which both components blow up at the same point. This blow-up behavior is asymmetric, and moreover one component includes also a certain global mass. The proof uses singular perturbation methods. (C) 2016 Elsevier Inc. All rights reserved.