Error estimates of a semidiscrete finite element method for fractional stochastic diffusion-wave equations

被引:19
作者
Zou, Guang-an [1 ]
Atangana, Abdon [2 ]
Zhou, Yong [3 ,4 ]
机构
[1] Henan Univ, Sch Math & Stat, Kaifeng 475004, Peoples R China
[2] Univ Free State, Fac Nat & Agr Sci, ZA-9300 Bloemfontein, South Africa
[3] Xiangtan Univ, Fac Math & Computat Sci, Xiangtan 411105, Hunan, Peoples R China
[4] King Abdulaziz Univ, Nonlinear Anal & Appl Math NAAM Res Grp, Fac Sci, Jeddah 21589, Saudi Arabia
基金
中国国家自然科学基金;
关键词
error estimates; finite element method; fractional calculus; stochastic diffusion-wave equations; DIFFERENTIAL-EQUATIONS; FUNDAMENTAL-SOLUTIONS; DERIVATIVE DRIVEN; SUBDIFFUSION; EXISTENCE;
D O I
10.1002/num.22252
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the Galerkin finite element method for solving the fractional stochastic diffusion-wave equations driven by multiplicative noise, which can be used to describe the propagation of mechanical waves in viscoelastic media with random effects. The optimal strong convergence error estimates with respect to the semidiscrete finite element approximation in space are established. Finally, a numerical example is presented to verify the reliability of the theoretical study.
引用
收藏
页码:1834 / 1848
页数:15
相关论文
共 50 条
  • [21] A B-spline collocation method for solving fractional diffusion and fractional diffusion-wave equations
    Esen, A.
    Tasbozan, O.
    Ucar, Y.
    Yagmurlu, N. M.
    TBILISI MATHEMATICAL JOURNAL, 2015, 8 (02) : 181 - 193
  • [22] An Indirect Finite Element Method for Variable-Coefficient Space-Fractional Diffusion Equations and Its Optimal-Order Error Estimates
    Zheng, Xiangcheng
    Ervin, V. J.
    Wang, Hong
    COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2020, 2 (01) : 147 - 162
  • [23] IMPROVED ERROR ESTIMATES OF A FINITE DIFFERENCE/SPECTRAL METHOD FOR TIME-FRACTIONAL DIFFUSION EQUATIONS
    Lv, Chunwan
    Xu, Chuanju
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2015, 12 (02) : 384 - 400
  • [24] Finite element methods for fractional diffusion equations
    Zhao, Yue
    Shen, Chen
    Qu, Min
    Bu, Weiping
    Tang, Yifa
    INTERNATIONAL JOURNAL OF MODELING SIMULATION AND SCIENTIFIC COMPUTING, 2020, 11 (04)
  • [25] Stability and asymptotics for fractional delay diffusion-wave equations
    Yao, Zichen
    Yang, Zhanwen
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (14) : 15208 - 15225
  • [26] Error Estimates of Finite Element Method for the Incompressible Ferrohydrodynamics Equations
    Mao, Shipeng
    Sun, Jiaao
    COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2025, 7 (02) : 485 - 535
  • [27] Error Estimates of Mixed Finite Element Methods for Time-Fractional Navier–Stokes Equations
    Xiaocui Li
    Xiaoyuan Yang
    Yinghan Zhang
    Journal of Scientific Computing, 2017, 70 : 500 - 515
  • [28] Galerkin finite element method for two-dimensional Riesz space fractional diffusion equations
    Bu, Weiping
    Tang, Yifa
    Yang, Jiye
    JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 276 : 26 - 38
  • [29] A PRIORI ERROR ESTIMATES FOR SEMIDISCRETE FINITE ELEMENT APPROXIMATIONS TO EQUATIONS OF MOTION ARISING IN OLDROYD FLUIDS OF ORDER ONE
    Goswami, Deepjyoti
    Pani, Amiya K.
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2011, 8 (02) : 324 - 352
  • [30] SUBORDINATION PRINCIPLE FOR FRACTIONAL DIFFUSION-WAVE EQUATIONS OF SOBOLEV TYPE
    Ponce, Rodrigo
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2020, 23 (02) : 427 - 449