A toolbox for easy entry low wavenumber in situ atomic layer deposition transmission FTIR spectroscopy studies

被引:1
|
作者
Bin Afif, Abdulla [1 ]
Dadlani, Anup L. [1 ]
Flaten, Andreas [1 ]
Lid, Markus Joakim [1 ]
Ofstad, Johannes [2 ]
Erbe, Andreas [2 ]
Kollensperger, Peter [3 ]
Torgersen, Jan [1 ]
机构
[1] Norwegian Univ Sci & Technol, Dept Ind & Mech Engn, Trondheim, Norway
[2] Norwegian Univ Sci & Technol, Dept Mat Sci & Engn, Trondheim, Norway
[3] Norwegian Univ Sci & Technol, Dept Phys, Trondheim, Norway
来源
REVIEW OF SCIENTIFIC INSTRUMENTS | 2022年 / 93卷 / 08期
关键词
GROWTH; AL2O3; ALUMINUM; TEMPERATURE; COMPLEXES; MECHANISM; PLASMA; CYCLE; ALD;
D O I
10.1063/5.0102518
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
A detailed description of a flexible and portable atomic layer deposition (ALD) system is presented for conducting in situ Fourier transform infrared (FTIR) absorption spectroscopy studies during the evolution and growth of ALD films. The system is directly integrated with a commercial FTIR spectrometer (Bruker Vertex 80V) to avoid the necessity of an external optical path to the instrument, thereby mitigating complexity and optical losses. In this work, we use potassium bromide (KBr) with a 5 nm layer of sputtered Si as a substrate due to higher infrared transmittance when compared to a single-side polished Si wafer. The FTIR absorption study is conducted at normal incidence in transmission mode using a deuterated L-alanine doped triglycine sulfate (DTGS) detector owing to its potential applicability for reliable measurements at wavenumbers below similar to 700 cm(-1). We demonstrate this by measuring ex situ the transverse optical phonon of bulk Al2O3 centered at 680 cm(-1). The integrity and functionality of the system to track the nucleation stage are validated by conducting in situ FTIR absorption measurements of Al2O3 using tri-methyl aluminum (TMA) and H2O. The measured IR absorption spectra for the Al2O3 growth after each cycle of TMA and H2O show the formation and removal of CH3 (2800-3000 cm(-1)) groups on the substrate surface and CH4 (3016 and 1306 cm(-1)) molecules in the reactor, thus confirming the successful tracking of ligand exchange. Thus, this instrument, together with the choice of KBr as substrate, can enable straightforward ALD nucleation studies using a DTGS detector having sufficient signal without additional optical setup and modifications to off-the-shelf FTIR systems that allow low wavenumber experiments.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] In situ studies of low temperature atomic level processing of GaN surfaces for atomic layer epitaxial growth
    Rosenberg, Samantha G.
    Wagenbach, Christa
    Anderson, Virginia R.
    Johnson, Scooter D.
    Nepal, Neeraj
    Kozen, Alexander C.
    Woodward, Jeffrey M.
    Robinson, Zachary R.
    Munger, Max
    Joress, Howie
    Ludwig, Karl F., Jr.
    Eddy, Charles R., Jr.
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2019, 37 (02):
  • [22] Comparative studies of atomic layer deposition and plasma-enhanced atomic layer deposition Ta2O5 and the effects on electrical properties of in situ nitridation
    Maeng, Wan-Joo
    Lee, Jae-Woong
    Myoung, Jae-Min
    Kim, Hyungjun
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 2007, 46 (5B): : 3224 - 3228
  • [23] Initial reactions of ultrathin HfO2 films by in situ atomic layer deposition: An in situ synchrotron photoemission spectroscopy study
    Kim, Seok Hwan
    Song, Wooseok
    Jeon, In Su
    Lee, Sun Sook
    Chung, Taek-Mo
    An, Ki-Seok
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2018, 36 (02):
  • [24] Elucidating the Surface Reaction Mechanisms During Atomic Layer Deposition of LixAlySizO by in Situ Fourier Transform Infrared Spectroscopy
    Cho, Jea
    Kim, Taeseung
    Seegmiller, Trevor
    Chang, Jane P.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (22): : 11837 - 11846
  • [25] Surface reaction kinetics of room temperature atomic layer deposition of ZnO observed by in situ IR absorption spectroscopy
    Yoshida, Kazuki
    Saito, Kentaro
    Miura, Masanori
    Kanomata, Kensaku
    Hirose, Fumihiko
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2019, 37 (02):
  • [26] Understanding KOtBu in atomic layer deposition - in situ mechanistic studies of the KNbO3 growth process
    Sonsteby, Henrik H.
    Killi, Veronica A-L K.
    Storaas, Thomas A.
    Choudhury, Devika
    Elam, Jeffrey W.
    Fjellvag, Helmer
    Nilsen, Ota
    DALTON TRANSACTIONS, 2020, 49 (38) : 13233 - 13242
  • [27] In-situ studies of III-V surfaces and high-k atomic layer deposition
    Brennan, B.
    McDonnell, S.
    Zhernokletov, D.
    Dong, H.
    Hinkle, C. L.
    Kim, J.
    Wallace, R. M.
    ULTRA CLEAN PROCESSING OF SEMICONDUCTOR SURFACES XI, 2013, 195 : 90 - 94
  • [28] In Situ Reaction Mechanism Studies on Lithium Hexadimethyldisilazide and Ozone Atomic Layer Deposition Process for Lithium Silicate
    Tomczak, Yoann
    Knapas, Kjell
    Sundberg, Markku
    Leskela, Markku
    Ritala, Mikko
    JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (27): : 14241 - 14246
  • [29] Atomic Layer Deposition of Hafnium Oxide on InAs: Insight from Time-Resolved in Situ Studies
    D'Acunto, Giulio
    Troian, Andrea
    Kokkonen, Esko
    Rehman, Foqia
    Liu, Yen-Po
    Yngman, Sofie
    Yong, Zhihua
    McKibbin, Sarah R.
    Gallo, Tamires
    Lind, Erik
    Schnadt, Joachim
    Timm, Rainer
    ACS APPLIED ELECTRONIC MATERIALS, 2020, 2 (12) : 3915 - 3922
  • [30] Synthesis and in situ characterization of low-resistivity TaNx films by remote plasma atomic layer deposition
    Langereis, E.
    Knoops, H. C. M.
    Mackus, A. J. M.
    Roozeboom, F.
    van de Sanden, M. C. M.
    Kessels, W. M. M.
    JOURNAL OF APPLIED PHYSICS, 2007, 102 (08)