Bismuth-mesoporous silica-based phase change materials for thermal energy storage

被引:8
|
作者
Lincu, Daniel [1 ,2 ]
Ionita, Simona [2 ]
Trica, Bogdan [3 ]
Culita, Daniela C. [3 ]
Matei, Cristian [2 ]
Berger, Daniela [2 ]
Mitran, Raul-Augustin [1 ]
机构
[1] Romanian Acad, Ilie Murgulescu Inst Phys Chem, 202 Splaiul Indepedentei, Bucharest 060021, Romania
[2] Univ Politehn Bucuresti, Fac Appl Chem & Mat Sci, 1-7 Polizu St, Bucharest 011061, Romania
[3] Natl Inst Res & Dev Chem & Petrochemistry ICECHIM, 202 Spl Independentei, Bucharest 060021, Romania
关键词
Mesoporous silica; Metallic phase change material; Thermal energy storage; Bismuth; TUNABLE MELTING TEMPERATURE; CONDUCTIVITY; COMPOSITES; HYSTERESIS; POROSITY; SHELL;
D O I
10.1016/j.apmt.2022.101663
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Effective heat storage at temperatures above 200 degrees C enables large scale, concentrated solar thermal energy storage or heating applications. Metals can be used for latent heat storage, as they provide high volumetric energy densities at low cost. The volume change during transition limits their stability, but it can be overcome through encapsulation or impregnation into porous matrices. We report the first study on Bismuth-based phase change materials using mesoporous silica matrices or silica shells. High metal fractions (50-70% wt.) were obtained. The metal phase form sub-micron sized domains, with good dispersion inside the silica matrix. Samples obtained by encapsulation show low enthalpy and reliability. High enthalpy values (22-32 Jg(-1)), comparable to that of Bi particles were obtained for samples containing mesoporous silica. These composites exhibit good thermal reliability and shape-stability above the metal melting point, in contrast to Bi particles, which show molten metal leakage. Nanoconfinement of the metal phase decreases its melting point by 1-3 degrees C and its heat of fusion by less than 1%. The good heat storage capacity of composites containing 70% wt. Bi could be explained by a reduction in metal oxidation, caused by the presence of the mesoporous silica matrix.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Microencapsulated phase change materials as slurries for thermal energy storage: A review
    Pathak, Lagan
    Trivedi, G. V. N.
    Parameshwaran, R.
    Deshmukh, S. Sandip
    MATERIALS TODAY-PROCEEDINGS, 2021, 44 : 1960 - 1963
  • [22] Polyurethane/graphene nanocomposites as phase change materials for thermal energy storage
    Pielichowska, Kinga
    Szatkowski, Piotr
    Zambrzycki, Marcel
    Macherzynska, Beata
    2015 IEEE 15TH INTERNATIONAL CONFERENCE ON NANOTECHNOLOGY (IEEE-NANO), 2015, : 105 - 108
  • [23] Influence of advanced composite phase change materials on thermal energy storage and thermal energy conversion
    Junaidi, Md. Abdul Raheem
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2025,
  • [24] Enhanced thermal performance of phase-change materials supported by mesoporous silica modified with polydopamine/nano-metal particles for thermal energy storage
    Li, Jiayin
    Hu, Xiaowu
    Zhang, Chuge
    Luo, Wenxing
    Jiang, Xiongxin
    RENEWABLE ENERGY, 2021, 178 (178) : 118 - 127
  • [25] Thermal energy storage based on cold phase change materials: Discharge phase assessment
    Reboli, Tommaso
    Ferrando, Marco
    Traverso, Alberto
    Chiu, Justin N. W.
    JOURNAL OF ENERGY STORAGE, 2023, 73
  • [26] Thermal energy storage based on cold phase change materials: Charge phase assessment
    Reboli, Tommaso
    Ferrando, Marco
    Traverso, Alberto
    Chiu, Justin N. W.
    APPLIED THERMAL ENGINEERING, 2022, 217
  • [27] Form-stable phase change materials based on hierarchically channel-like silica nanofibrous mats for thermal energy storage
    Zhang, Jin
    Feng, Quan
    Wei, Anfang
    Xu, Zhenzhen
    Wei, Qufu
    Li, Changlong
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2022, 642
  • [28] FDU-12 cubic mesoporous silica as matrix for phase change materials using bismuth or stearic acid
    Mitran, Raul-Augustin
    Lincu, Daniel
    Berger, Daniela
    Matei, Cristian
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2022, 147 (24) : 14097 - 14106
  • [29] Kaolinite-based form-stable phase change materials for thermal energy storage
    Cheng, Hongfei
    Zhou, Yi
    Xu, Peijie
    Zhang, Meng
    Sun, Luyi
    JOURNAL OF ENERGY STORAGE, 2024, 87
  • [30] A New Phase Change Material Based on Potassium Nitrate with Silica and Alumina Nanoparticles for Thermal Energy Storage
    Chieruzzi, Manila
    Miliozzi, Adio
    Crescenzi, Tommaso
    Torre, Luigi
    Kenny, Jose M.
    NANOSCALE RESEARCH LETTERS, 2015, 10