Bismuth-mesoporous silica-based phase change materials for thermal energy storage

被引:8
|
作者
Lincu, Daniel [1 ,2 ]
Ionita, Simona [2 ]
Trica, Bogdan [3 ]
Culita, Daniela C. [3 ]
Matei, Cristian [2 ]
Berger, Daniela [2 ]
Mitran, Raul-Augustin [1 ]
机构
[1] Romanian Acad, Ilie Murgulescu Inst Phys Chem, 202 Splaiul Indepedentei, Bucharest 060021, Romania
[2] Univ Politehn Bucuresti, Fac Appl Chem & Mat Sci, 1-7 Polizu St, Bucharest 011061, Romania
[3] Natl Inst Res & Dev Chem & Petrochemistry ICECHIM, 202 Spl Independentei, Bucharest 060021, Romania
关键词
Mesoporous silica; Metallic phase change material; Thermal energy storage; Bismuth; TUNABLE MELTING TEMPERATURE; CONDUCTIVITY; COMPOSITES; HYSTERESIS; POROSITY; SHELL;
D O I
10.1016/j.apmt.2022.101663
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Effective heat storage at temperatures above 200 degrees C enables large scale, concentrated solar thermal energy storage or heating applications. Metals can be used for latent heat storage, as they provide high volumetric energy densities at low cost. The volume change during transition limits their stability, but it can be overcome through encapsulation or impregnation into porous matrices. We report the first study on Bismuth-based phase change materials using mesoporous silica matrices or silica shells. High metal fractions (50-70% wt.) were obtained. The metal phase form sub-micron sized domains, with good dispersion inside the silica matrix. Samples obtained by encapsulation show low enthalpy and reliability. High enthalpy values (22-32 Jg(-1)), comparable to that of Bi particles were obtained for samples containing mesoporous silica. These composites exhibit good thermal reliability and shape-stability above the metal melting point, in contrast to Bi particles, which show molten metal leakage. Nanoconfinement of the metal phase decreases its melting point by 1-3 degrees C and its heat of fusion by less than 1%. The good heat storage capacity of composites containing 70% wt. Bi could be explained by a reduction in metal oxidation, caused by the presence of the mesoporous silica matrix.
引用
收藏
页数:10
相关论文
共 50 条
  • [11] Numerical simulation of thermal energy storage based on phase change materials
    Seitov, A.
    Akhmetov, B.
    Georgiev, A. G.
    Kaltayev, A.
    Popov, R. K.
    Dzhonova-Atanasova, D. B.
    Tungatarova, M. S.
    BULGARIAN CHEMICAL COMMUNICATIONS, 2016, 48 : 181 - 188
  • [12] Aluminum and silicon based phase change materials for high capacity thermal energy storage
    Wang, Zhengyun
    Wang, Hui
    Li, Xiaobo
    Wang, Dezhi
    Zhang, Qinyong
    Chen, Gang
    Ren, Zhifeng
    APPLIED THERMAL ENGINEERING, 2015, 89 : 204 - 208
  • [13] Evaluation of paraffin infiltrated in various porous silica matrices as shape-stabilized phase change materials for thermal energy storage
    Zhang, Yuzhong
    Zheng, Shuilin
    Zhu, Shuquan
    Ma, Jianning
    Sun, Zhiming
    Farid, Mohammed
    ENERGY CONVERSION AND MANAGEMENT, 2018, 171 : 361 - 370
  • [14] Microencapsulation of bio-based phase change materials with silica coated inorganic shell for thermal energy storage
    Ismail, Abdulmalik
    Zhou, Jingyi
    Aday, Anastasia
    Davidoff, Isabel
    Odukomaiya, Adewale
    Wang, Jialai
    JOURNAL OF BUILDING ENGINEERING, 2023, 67
  • [15] Shape-stabilized phase change materials for thermal energy storage and heat dissipation
    Jiang, Zhuoni
    Liu, Xu
    He, Fangfang
    Li, Yongsheng
    Chen, Zhengguo
    Li, Xiaoan
    Wang, Peng
    He, Guansong
    Yang, Wenbin
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2024, 688
  • [16] Thermal energy storage and phase change materials: An overview
    Demirbas, M. Fatih
    ENERGY SOURCES PART B-ECONOMICS PLANNING AND POLICY, 2006, 1 (01) : 85 - 95
  • [17] Multifunctional wood based composite phase change materials for magnetic-thermal and solar-thermal energy conversion and storage
    Yang, Haiyue
    Chao, Weixiang
    Di, Xin
    Yang, Zhaolin
    Yang, Tinghan
    Yu, Qianqian
    Liu, Feng
    Li, Jian
    Li, Guoliang
    Wang, Chengyu
    ENERGY CONVERSION AND MANAGEMENT, 2019, 200
  • [18] Influence of advanced composite phase change materials on thermal energy storage and thermal energy conversion
    Junaidi, Md. Abdul Raheem
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2025,
  • [19] Enhanced thermal performance of phase-change materials supported by mesoporous silica modified with polydopamine/nano-metal particles for thermal energy storage
    Li, Jiayin
    Hu, Xiaowu
    Zhang, Chuge
    Luo, Wenxing
    Jiang, Xiongxin
    RENEWABLE ENERGY, 2021, 178 (178) : 118 - 127
  • [20] Optimization strategies of microencapsulated phase change materials for thermal energy storage
    Wang, K. W.
    Yan, Ting
    Pan, W. G.
    JOURNAL OF ENERGY STORAGE, 2023, 68