Mixed spectra and partially extended states in a two-dimensional quasiperiodic model

被引:54
作者
Szabo, Attila [1 ]
Schneider, Ulrich [1 ]
机构
[1] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England
基金
英国工程与自然科学研究理事会;
关键词
LOCALIZATION; ELECTRONS; LATTICES; EQUATION;
D O I
10.1103/PhysRevB.101.014205
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We introduce a two-dimensional generalization of the quasiperiodic Aubry-Andre model. Even though this model exhibits the same duality relation as the one-dimensional version, its localization properties are found to be substantially more complex. In particular, partially extended single-particle states appear for arbitrarily strong quasiperiodic modulation. They are concentrated on a network of low-disorder lattice lines, while the rest of the lattice hosts localized states. This spatial separation protects the localized states from delocalization, so no mobility edge emerges in the spectrum. Instead, localized and partially extended states are interspersed, giving rise to an unusual type of mixed spectrum and enabling complex dynamics even in the absence of interactions. A striking example is ballistic transport across the low-disorder lines while the rest of the system remains localized. This behavior is robust against disorder and other weak perturbations. Our model is thus directly amenable to experimental studies and promises fascinating many-body localization properties.
引用
收藏
页数:10
相关论文
共 54 条
[11]  
Bordia P, 2017, NAT PHYS, V13, P460, DOI [10.1038/NPHYS4020, 10.1038/nphys4020]
[12]   Coupling Identical one-dimensional Many-Body Localized Systems [J].
Bordia, Pranjal ;
Luschen, Henrik P. ;
Hodgman, Sean S. ;
Schreiber, Michael ;
Bloch, Immanuel ;
Schneider, Ulrich .
PHYSICAL REVIEW LETTERS, 2016, 116 (14)
[13]   Localization and Symmetry Breaking in the Quantum Quasiperiodic Ising Glass [J].
Chandran, A. ;
Laumann, C. R. .
PHYSICAL REVIEW X, 2017, 7 (03)
[14]   Two-dimensional optical quasicrystal potentials for ultracold atom experiments [J].
Corcovilos, Theodore A. ;
Mittal, Jahnavee .
APPLIED OPTICS, 2019, 58 (09) :2256-2263
[15]   Stability and instability towards delocalization in many-body localization systems [J].
De Roeck, Wojciech ;
Huveneers, Francois .
PHYSICAL REVIEW B, 2017, 95 (15)
[16]   Delocalization of a disordered bosonic system by repulsive interactions [J].
Deissler, B. ;
Zaccanti, M. ;
Roati, G. ;
D'Errico, C. ;
Fattori, M. ;
Modugno, M. ;
Modugno, G. ;
Inguscio, M. .
NATURE PHYSICS, 2010, 6 (05) :354-358
[17]   Anderson localization transitions with and without random potentials [J].
Devakul, Trithep ;
Huse, David A. .
PHYSICAL REVIEW B, 2017, 96 (21)
[18]   Griffiths effects and slow dynamics in nearly many-body localized systems [J].
Gopalakrishnan, Sarang ;
Agarwal, Kartiek ;
Demler, Eugene A. ;
Huse, David A. ;
Knap, Michael .
PHYSICAL REVIEW B, 2016, 93 (13)
[19]   Delocalization and scaling properties of low-dimensional quasiperiodic systems [J].
Guo, Ai-Min ;
Xie, X. C. ;
Sun, Qing-feng .
PHYSICAL REVIEW B, 2014, 89 (07)
[20]   CRITICAL AND BICRITICAL PROPERTIES OF HARPERS EQUATION WITH NEXT-NEAREST-NEIGHBOR COUPLING [J].
HAN, JH ;
THOULESS, DJ ;
HIRAMOTO, H ;
KOHMOTO, M .
PHYSICAL REVIEW B, 1994, 50 (16) :11365-11380