Mo2CS2-MXene supported single-atom catalysts for efficient and selective CO2 electrochemical reduction

被引:32
|
作者
Baskaran, Sambath [1 ]
Jung, Jaehoon [1 ]
机构
[1] Univ Ulsan, Dept Chem, Ulsan 44776, South Korea
基金
新加坡国家研究基金会;
关键词
CO; 2; reduction; DFT studies; Single-atom catalysts; Heterogeneous catalysts; Electrochemical reaction; GENERALIZED GRADIENT APPROXIMATION; ELECTROCHEMICAL CO2 REDUCTION; TOTAL-ENERGY CALCULATIONS; CARBON-DIOXIDE; 2-DIMENSIONAL MXENES; ELECTROREDUCTION; OXIDATION; CONVERSION; PERFORMANCE; CAPTURE;
D O I
10.1016/j.apsusc.2022.153339
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Single-atom catalysts (SACs) recently attracted considerable attention in heterogeneous catalysis, owing to high atom-utilization and unique properties. In this paper, we investigated geometry, electronic structure, stabilities, catalytic activity, and selectivity of the various TM@Mo2CS2 (TM = Fe, Co, Ni, Cu, Ru. Rh, Pd, Ag, Os, Ir, Pt, and Au) anchored SACs for CO2 electrochemical reduction using periodic density functional theory and ab-initio molecular dynamics calculations. The single metal atoms tend to occupy the Mo-top site on the Mo2CS2 surface. Possible different reaction pathways to produce various C1 products such as CO, HCOOH, HCHO, CH3OH, and CH4 have been investigated for Fe, Co, Ni, and Ru supported SACs. Among the SACs investigated, Fe, Co, and Ru supported by Mo2CS2 catalysts selectively produce CH4, whereas Ru@Mo2CS2 has the lowest overpotential of 0.24 V. Ni primarily produces HCOOH with an overpotential is 0.37 V. Therefore, this research demonstrated the significant potential of Mo2CS2 surface for a single-atom catalyst for selective CO2 reduction and other electrochemical applications.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Selective CO2 Reduction over γ-Graphyne Supported Single-Atom Catalysts: Crucial Role of Strain Regulation
    Liu, Tianyang
    Xu, Tianze
    Li, Tianchun
    Jing, Yu
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2024, 146 (34) : 24133 - 24140
  • [22] Computational screening of defective BC3-supported single-atom catalysts for electrochemical CO2 reduction
    Li, Renyi
    Wang, Caimu
    Liu, Yaozhong
    Suo, Chengxiang
    Zhang, Danyang
    Zhang, Jiao
    Guo, Wei
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2024, 26 (26) : 18285 - 18301
  • [23] Recent advances in the rational design of single-atom catalysts for electrochemical CO2 reduction
    Gu, Huoliang
    Wu, Jing
    Zhang, Liming
    NANO RESEARCH, 2022, 15 (11) : 9747 - 9763
  • [24] Single-atom catalysts: stimulating electrochemical CO2 reduction reaction in the industrial era
    Zhang, Zedong
    Wang, Dingsheng
    JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (11) : 5863 - 5877
  • [25] Recent progress of electrochemical reduction of CO2 by single atom catalysts
    Wang, Tian
    Zhang, Jincheng
    Li, Fuhua
    Liu, Bin
    Kawi, Sibudjing
    MATERIALS REPORTS: ENERGY, 2022, 2 (03):
  • [26] Recent strategy(ies) for the electrocatalytic reduction of CO2: Ni single-atom catalysts for the selective electrochemical formation of CO in aqueous electrolytes
    Yadav, Dharmendra Kumar
    Singh, Devesh Kumar
    Ganesan, Vellaichamy
    CURRENT OPINION IN ELECTROCHEMISTRY, 2020, 22 : 87 - 93
  • [27] Applications of Single-atom Catalysts in CO2 Conversion
    Qin Yongji
    Luo Jun
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2022, 43 (09):
  • [28] Single-atom catalysis for electrochemical CO2 reduction
    Jia, Mingwen
    Fan, Qun
    Liu, Shizhen
    Qiu, Jieshan
    Sun, Zhenyu
    CURRENT OPINION IN GREEN AND SUSTAINABLE CHEMISTRY, 2019, 16 : 1 - 6
  • [29] Control over Electrochemical CO2 Reduction Selectivity by Coordination Engineering of Tin Single-Atom Catalysts
    Guo, Jiangyi
    Zhang, Wenlin
    Zhang, Lu-Hua
    Chen, Datong
    Zhan, Jiayu
    Wang, Xueli
    Shiju, N. Raveendran
    Yu, Fengshou
    ADVANCED SCIENCE, 2021, 8 (23)
  • [30] Regulating the coordination environment of single-atom catalysts for electrocatalytic CO2 reduction
    Lu, Song
    Lou, Fengliu
    Zhao, Yafei
    Yu, Zhixin
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2023, 646 : 301 - 310