Polymer-Assisted High-Resolution Printing Techniques for Colloidal Quantum Dots

被引:26
作者
Yang, Jiwoong [1 ]
Yoo, Jisu [2 ]
Yu, Won Seok [1 ]
Choi, Moon Kee [2 ]
机构
[1] Daegu Gyeongbuk Inst Sci & Technol DGIST, Dept Energy Sci & Engn, Daegu 42988, South Korea
[2] Ulsan Natl Inst Sci & Technol UNIST, Dept Mat Sci & Engn, Ulsan 44919, South Korea
基金
新加坡国家研究基金会;
关键词
quantum dot; printing; high-resolution patterning; photolithography; inkjet printing; transfer printing; LIGHT-EMITTING-DIODES; FULL-COLOR; NANOCRYSTALS; LITHOGRAPHY; COMPOSITES; PHOTOLITHOGRAPHY; TRANSPARENT; CHALLENGES; EFFICIENT; PATTERNS;
D O I
10.1007/s13233-021-9055-y
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Over the last several decades, colloidal quantum dots (QDs) have been widely studied because of their unique optical and electronical properties such as band gap tunability, extremely high color purity, and efficient light absorption and emission. Consequently, they have been regarded as promising materials for next-generation optoelectronic devices such as displays, image sensors, and solar cells. Because these devices employ solid state forms of colloidal QD ensembles, the development of the processes that can tailor their 3D architecture is essential. Here, this review article explores the recent progress of the high-resolution printing techniques for colloidal QDs. Specifically, we present a wide range of methods including photolithography, inkjet printing, nanoimprinting, and transfer printing. We also discuss how these printing methods have been inspired by the patterning techniques for polymer-based materials.
引用
收藏
页码:391 / 401
页数:11
相关论文
共 103 条
[1]   Nanocube Imprint Lithography [J].
Agrawal, Harshal ;
Garnett, Erik C. .
ACS NANO, 2020, 14 (09) :11009-11016
[2]   Semiconductor clusters, nanocrystals, and quantum dots [J].
Alivisatos, AP .
SCIENCE, 1996, 271 (5251) :933-937
[3]   Nanostructured colloidal quantum dots for efficient electroluminescence devices [J].
Bae, Wan Ki ;
Lim, Jaehoon .
KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2019, 36 (02) :173-185
[4]   Controlling the influence of Auger recombination on the performance of quantum-dot light-emitting diodes [J].
Bae, Wan Ki ;
Park, Young-Shin ;
Lim, Jaehoon ;
Lee, Donggu ;
Padilha, Lazaro A. ;
McDaniel, Hunter ;
Robel, Istvan ;
Lee, Changhee ;
Pietryga, Jeffrey M. ;
Klimov, Victor I. .
NATURE COMMUNICATIONS, 2013, 4
[5]   Colloidal Quantum Dot Solar Cells [J].
Carey, Graham H. ;
Abdelhady, Ahmed L. ;
Ning, Zhijun ;
Thon, Susanna M. ;
Bakr, Osman M. ;
Sargent, Edward H. .
CHEMICAL REVIEWS, 2015, 115 (23) :12732-12763
[6]   Transfer Printing Techniques for Materials Assembly and Micro/Nanodevice Fabrication [J].
Carlson, Andrew ;
Bowen, Audrey M. ;
Huang, Yonggang ;
Nuzzo, Ralph G. ;
Rogers, John A. .
ADVANCED MATERIALS, 2012, 24 (39) :5284-5318
[7]  
Chang SC, 1999, ADV MATER, V11, P734, DOI 10.1002/(SICI)1521-4095(199906)11:9<734::AID-ADMA734>3.0.CO
[8]  
2-D
[9]   Soft Contact Transplanted Nanocrystal Quantum Dots for Light-Emitting Diodes: Effect of Surface Energy on Device Performance [J].
Cho, Hyunduck ;
Kwak, Jeonghun ;
Lim, Jaehoon ;
Park, Myeongjin ;
Lee, Donggu ;
Bae, Wan Ki ;
Kim, Youn Sang ;
Char, Kookheon ;
Lee, Seonghoon ;
Lee, Changhee .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (20) :10828-10833
[10]   Human eye-inspired soft optoelectronic device using high-density MoS2-graphene curved image sensor array [J].
Choi, Changsoon ;
Choi, Moon Kee ;
Liu, Siyi ;
Kim, Min Sung ;
Park, Ok Kyu ;
Im, Changkyun ;
Kim, Jaemin ;
Qin, Xiaoliang ;
Lee, Gil Ju ;
Cho, Kyoung Won ;
Kim, Myungbin ;
Joh, Eehyung ;
Lee, Jongha ;
Son, Donghee ;
Kwon, Seung-Hae ;
Jeon, Noo Li ;
Song, Young Min ;
Lu, Nanshu ;
Kim, Dae-Hyeong .
NATURE COMMUNICATIONS, 2017, 8