Two-particle states in one-dimensional coupled Bose-Hubbard models

被引:2
作者
Li, Yabo [1 ,2 ]
Schneble, Dominik [2 ]
Wei, Tzu-Chieh [1 ,2 ]
机构
[1] SUNY Stony Brook, CN Yang Inst Theoret Phys, Stony Brook, NY 11794 USA
[2] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA
基金
美国国家科学基金会;
关键词
MOTT INSULATOR; QUANTUM; LOCALIZATION; SUPERFLUID; PHOTONS; ATOMS; GAS;
D O I
10.1103/PhysRevA.105.053310
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We study dynamically coupled one-dimensional Bose-Hubbard models and solve for the wave functions and energies of two-particle eigenstates. Even though the wave functions do not directly follow the form of a Bethe ansatz, we describe an intuitive construction to express them as combinations of Choy-Haldane states for models with intra- and interspecies interactions. We find that the two-particle spectrum of the system with generic interactions comprises in general four different continua and three doublon dispersions. The existence of doublons depends on the coupling strength S2 between two species of bosons, and their energies vary with S2 and interaction strengths. We give details on one specific limit, i.e., with infinite interaction, and derive the spectrum for all types of two-particle states and their spatial and entanglement properties. We demonstrate the difference in time evolution under different coupling strengths and examine the relation between the long-time behavior of the system and the doublon dispersion. These dynamics can in principle be observed in cold atoms and might also be simulated by digital quantum computers.
引用
收藏
页数:19
相关论文
共 58 条
[21]   Atom-light interactions in photonic crystals [J].
Goban, A. ;
Hung, C. -L. ;
Yu, S. -P. ;
Hood, J. D. ;
Muniz, J. A. ;
Lee, J. H. ;
Martin, M. J. ;
McClung, A. C. ;
Choi, K. S. ;
Chang, D. E. ;
Painter, O. ;
Kimble, H. J. .
NATURE COMMUNICATIONS, 2014, 5
[22]   Quantum phase transitions of light [J].
Greentree, Andrew D. ;
Tahan, Charles ;
Cole, Jared H. ;
Hollenberg, Lloyd C. L. .
NATURE PHYSICS, 2006, 2 (12) :856-861
[23]   Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms [J].
Greiner, M ;
Mandel, O ;
Esslinger, T ;
Hänsch, TW ;
Bloch, I .
NATURE, 2002, 415 (6867) :39-44
[24]   Quantum simulations with ultracold atoms in optical lattices [J].
Gross, Christian ;
Bloch, Immanuel .
SCIENCE, 2017, 357 (6355) :995-1001
[25]   Strongly interacting polaritons in coupled arrays of cavities [J].
Hartmann, Michael J. ;
Brandao, Fernando G. S. L. ;
Plenio, Martin B. .
NATURE PHYSICS, 2006, 2 (12) :849-855
[26]   Demonstration of a Single-Photon Router in the Microwave Regime [J].
Hoi, Io-Chun ;
Wilson, C. M. ;
Johansson, Goran ;
Palomaki, Tauno ;
Peropadre, Borja ;
Delsing, Per .
PHYSICAL REVIEW LETTERS, 2011, 107 (07)
[27]   Bound states in the continuum [J].
Hsu, Chia Wei ;
Zhen, Bo ;
Stone, A. Douglas ;
Joannopoulos, John D. ;
Soljacic, Marin .
NATURE REVIEWS MATERIALS, 2016, 1 (09)
[28]   Spin transport in a tunable Heisenberg model realized with ultracold atoms [J].
Jepsen, Paul Niklas ;
Amato-Grill, Jesse ;
Dimitrova, Ivana ;
Ho, Wen Wei ;
Demler, Eugene ;
Ketterle, Wolfgang .
NATURE, 2020, 588 (7838) :403-+
[29]   QUANTUM ELECTRODYNAMICS NEAR A PHOTONIC BAND-GAP - PHOTON BOUND-STATES AND DRESSED ATOMS [J].
JOHN, S ;
WANG, J .
PHYSICAL REVIEW LETTERS, 1990, 64 (20) :2418-2421
[30]   The quantum internet [J].
Kimble, H. J. .
NATURE, 2008, 453 (7198) :1023-1030