Approximation by Bezier variant of the Szasz-Kantorovich operators in case α < 1

被引:2
作者
Gupta, Vijay [1 ]
Zeng, Xiao-Ming [2 ]
机构
[1] Netaji Subhas Inst Technol, Sch Appl Sci, New Delhi 110078, India
[2] Xiamen Univ, Dept Math, Xiamen 361005, Peoples R China
基金
美国国家科学基金会;
关键词
Approximation; Szasz-Kantorovich operators; Bezier variant; locally bounded functions; Lebesgue-Stieltjes integral; BOUNDED VARIATION; BERNSTEIN POLYNOMIALS; CONVERGENCE;
D O I
10.1515/GMJ.2010.017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The present paper deals with the Bezier variant of the Szasz-Kantorovich operator. Its approximation properties are studied. A convergence theorem of this type approximation operators for locally bounded functions is established, which subsumes the approximation of functions of bounded variation as a special case.
引用
收藏
页码:253 / 260
页数:8
相关论文
共 10 条
[1]   RATE OF CONVERGENCE OF BERNSTEIN POLYNOMIALS FOR FUNCTIONS WITH DERIVATIVES OF BOUNDED VARIATION [J].
BOJANIC, R ;
CHENG, F .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1989, 141 (01) :136-151
[2]   ON THE RATE OF CONVERGENCE OF BERNSTEIN POLYNOMIALS OF FUNCTIONS OF BOUNDED VARIATION [J].
CHENG, F .
JOURNAL OF APPROXIMATION THEORY, 1983, 39 (03) :259-274
[3]  
Gupta V., 2002, PUBL I MATH BEOGRAD, V72, P137
[4]   Simultaneous approximation for Bezier variant of Szasz-Mirakyan-Durrmeyer operators [J].
Gupta, Vijay .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 328 (01) :101-105
[5]   Some properties of the Bezier-Kantorovich type operators [J].
Pych-Taberska, P .
JOURNAL OF APPROXIMATION THEORY, 2003, 123 (02) :256-269
[6]  
PYCHTABERSKA P, 1991, COMMENT MATH PRACE M, V31, P147
[7]   UNIFORM APPROXIMATION BY SZASZ-MIRAKJAN TYPE OPERATORS [J].
TOTIK, V .
ACTA MATHEMATICA HUNGARICA, 1983, 41 (3-4) :291-307
[8]   On the rate of convergence of the generalized Szasz type operators for functions of bounded variation [J].
Zeng, XM .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1998, 226 (02) :309-325
[9]   Exact bounds for some basis functions of approximation operators [J].
Zeng, XM ;
Zhao, JN .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2001, 6 (05) :563-575
[10]   On the rates of approximation of Bernstein type operators [J].
Zeng, XM ;
Cheng, FF .
JOURNAL OF APPROXIMATION THEORY, 2001, 109 (02) :242-256