Advancing Space-Time Simulation of Random Fields: From Storms to Cyclones and Beyond

被引:30
作者
Papalexiou, Simon Michael [1 ,2 ,3 ]
Serinaldi, Francesco [4 ,5 ]
Porcu, Emilio [6 ,7 ]
机构
[1] Univ Saskatchewan, Dept Civil Geol & Environm Engn, Saskatoon, SK, Canada
[2] Univ Saskatchewan, Global Inst Water Secur, Saskatoon, SK, Canada
[3] Czech Univ Life Sci Prague, Fac Environm Sci, Prague, Czech Republic
[4] Newcastle Univ, Sch Engn, Newcastle Upon Tyne, Tyne & Wear, England
[5] Willis Res Network, London, England
[6] Khalifa Univ, Dept Math, Abu Dhabi, U Arab Emirates
[7] Trinity Coll Dublin, Sch Comp Sci & Stat, Dublin, Ireland
基金
加拿大自然科学与工程研究理事会;
关键词
random fields; advection; anisotropy; storms; cyclones; risk analysis; SPATIAL ANISOTROPY; RADAR-RAINFALL; PRECIPITATION; MODELS; PREDICTABILITY; DISTRIBUTIONS; GENERATION; ALGORITHM; EXTREMES; SERIES;
D O I
10.1029/2020WR029466
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Realistic stochastic simulation of hydro-environmental fluxes in space and time, such as rainfall, is challenging yet of paramount importance to inform environmental risk analysis and decision making under uncertainty. Here, we advance random fields simulation by introducing the concepts of general velocity fields and general anisotropy transformations. This expands the capabilities of the so-called Complete Stochastic Modeling Solution (CoSMoS) framework enabling the simulation of random fields (RF's) preserving: (a) any non-Gaussian marginal distribution, (b) any spatiotemporal correlation structure (STCS), (c) general advection expressed by velocity fields with locally varying speed and direction, and (d) locally varying anisotropy. We also introduce new copula-based STCS's and provide conditions guaranteeing their positive definiteness. To illustrate the potential of CoSMoS, we simulate RF's with complex patterns and motion mimicking rainfall storms moving across an area, spiraling fields resembling weather cyclones, fields converging to (or diverging from) a point, and colliding air masses. The proposed methodology is implemented in the freely available CoSMoS R package.
引用
收藏
页数:26
相关论文
共 75 条
[1]   Anisotropy Models for Spatial Data [J].
Allard, D. ;
Senoussi, R. ;
Porcu, E. .
MATHEMATICAL GEOSCIENCES, 2016, 48 (03) :305-328
[2]   MATHEMATICAL-MODELS FOR SIMULATION OF CYCLONIC STORM SEQUENCES AND PRECIPITATION FIELDS [J].
AMOROCHO, J ;
WU, B .
JOURNAL OF HYDROLOGY, 1977, 32 (3-4) :329-345
[3]   IDENTIFICATION AND CALIBRATION OF SPATIAL CORRELATION PATTERNS OF RAINFALL [J].
BACCHI, B ;
KOTTEGODA, NT .
JOURNAL OF HYDROLOGY, 1995, 165 (1-4) :311-348
[4]   THE CORRELATION-FUNCTION OF SMOOTHLY LIMITED GAUSSIAN-NOISE [J].
BAUM, RF .
IRE TRANSACTIONS ON INFORMATION THEORY, 1957, 3 (03) :193-197
[5]   Stochastic Rainfall Modeling at Sub-kilometer Scale [J].
Benoit, Lionel ;
Allard, Denis ;
Mariethoz, Gregoire .
WATER RESOURCES RESEARCH, 2018, 54 (06) :4108-4130
[6]  
BERG C., 2008, Positive Definite Functions: From Schoenberg to Space-Time Challenges, P15
[7]   Development of a precipitation nowcasting algorithm based upon optical flow techniques [J].
Bowler, NEH ;
Pierce, CE ;
Seed, A .
JOURNAL OF HYDROLOGY, 2004, 288 (1-2) :74-91
[8]   Spatiotemporal Precipitation Estimation from Rain Gauges and Meteorological Radar Using Geostatistics [J].
Cassiraga, Eduardo ;
Gomez-Hernandez, J. Jaime ;
Berenguer, Marc ;
Sempere-Torres, Daniel ;
Rodrigo-Ilarri, Javier .
MATHEMATICAL GEOSCIENCES, 2021, 53 (04) :499-516
[9]   The probability distribution of intense daily precipitation [J].
Cavanaugh, Nicholas R. ;
Gershunov, Alexander ;
Panorska, Anna K. ;
Kozubowski, Tomasz J. .
GEOPHYSICAL RESEARCH LETTERS, 2015, 42 (05) :1560-1567
[10]  
Chiles J P, 2009, GEOSTATISTICS MODELI