Forecasting of Solar Photovoltaic System Power Generation using Wavelet Decomposition and Bias-compensated Random Forest

被引:29
作者
Chiang, Po-Han [1 ]
Chiluvuri, Siva Prasad Varma [1 ]
Dey, Sujit [1 ]
Nguyen, Truong Q. [1 ]
机构
[1] Univ Calif San Diego, Dept Elect & Comp Engn, La Jolla, CA 92093 USA
来源
2017 NINTH ANNUAL IEEE GREEN TECHNOLOGIES CONFERENCE (GREENTECH 2017) | 2017年
基金
美国国家科学基金会;
关键词
Renewable energy; Artificial intelligence; Wavelet decomposition; Solar forecast; Random forest; Microgrid; RADIATION;
D O I
10.1109/GreenTech.2017.44
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The use of solar photovoltaic (PV) power is a promising solution to reduce grid power consumption and carbon dioxide emissions. However, the benefit of utilizing solar PV power is limited by its highly intermittent and unreliable nature. The non-stationary and non-linear characteristic of solar irradiance makes solar PV difficult to predict by traditional time series and artificial intelligence (AI) approaches. To address the above challenges, we propose a novel technique integrating stationary wavelet transform (SWT) and random forest models. Instead of conventional decompose-and-reconstruct process in SWT, we only apply the wavelet decomposition to extract the information from raw data with better time-frequency resolutions. We also propose a bias-compensation technique to minimize the prediction error. Our experimental results using sensors data from the on-campus microgrid demonstrate the proposed approach is robust to different forecast time horizons and has smaller prediction error.
引用
收藏
页码:260 / 266
页数:7
相关论文
共 20 条
[1]  
[Anonymous], 2015, SCIKIT LEARN MACHINE
[2]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[3]  
Cao S., 2005, APPL THERMAL ENG
[4]   Intra-hour forecasting with a total sky imager at the UC San Diego solar energy testbed [J].
Chow, Chi Wai ;
Urquhart, Bryan ;
Lave, Matthew ;
Dominguez, Anthony ;
Kleissl, Jan ;
Shields, Janet ;
Washom, Byron .
SOLAR ENERGY, 2011, 85 (11) :2881-2893
[5]   A wavelet-coupled support vector machine model for forecasting global incident solar radiation using limited meteorological dataset [J].
Deo, Ravinesh C. ;
Wen, Xiaohu ;
Qi, Feng .
APPLIED ENERGY, 2016, 168 :568-593
[6]   Solar forecasting methods for renewable energy integration [J].
Inman, Rich H. ;
Pedro, Hugo T. C. ;
Coimbra, Carlos F. M. .
PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2013, 39 (06) :535-576
[7]  
Mallat S., 1999, WAVELET TOUR SIGNAL, V2nd, DOI [10.1016/B978-012466606-1/50004-0, DOI 10.1016/B978-012466606-1/50004-0]
[8]  
Nason GP, 1995, Wavelets and Statistics, P281, DOI [10.1007/978-1-4612-2544-717, DOI 10.1007/978-1-4612-2544-717, DOI 10.1007/978-1-4612-2544-7_17, 10.1007/978-1-4612-2544-7_17]
[9]  
Oppenheim A., 2010, Pearson Higher Education
[10]  
Pavlovski A., 2012, INT WORKSH INT SOL P, V86, P2017