Conservation laws and exact solutions of a Generalized Benjamin-Bona-Mahony-Burgers equation

被引:18
作者
Bruzon, M. S. [1 ]
Garrido, T. M. [1 ]
de la Rosa, R. [1 ]
机构
[1] Univ Cadiz, Dept Math, Cadiz, Spain
关键词
Partial differential equations; Nonlinear self-adjointness; Multipliers; Conservation laws; Exact solutions; PARTIAL-DIFFERENTIAL EQUATIONS; DIRECT CONSTRUCTION; SYMMETRY ANALYSIS; LIE SYMMETRIES; SYSTEM;
D O I
10.1016/j.chaos.2016.03.034
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The concept of nonlinear self-adjointness given by Ibragimov is applied to a Generalized Benjamin-Bona-Mahony-Burgers equation. Then, a nonlinear self-adjoint classification has been achieved. Moreover, some nontrivial conservation laws are constructed by using the multipliers method which does not require the use of a variational principle. Finally, by applying the modified simplest equation method we derive new travelling wave solutions. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:578 / 583
页数:6
相关论文
共 26 条
[1]   Direct construction method for conservation laws of partial differential equations - Part I: Examples of conservation law classifications [J].
Anco, SC ;
Bluman, G .
EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2002, 13 :545-566
[2]   Direct construction method for conservation laws of partial differential equations - Part II: General treatment [J].
Anco, SC ;
Bluman, G .
EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2002, 13 :567-585
[3]   Direct construction of conservation laws from field equations [J].
Anco, SC ;
Bluman, G .
PHYSICAL REVIEW LETTERS, 1997, 78 (15) :2869-2873
[4]  
Anco SC, 2015, ARXIV14071258V4NLINS
[5]   Symmetry Analysis and Solutions for a Generalization of a Family of BBM Equations [J].
Bruzon, M. S. ;
Gandarias, M. L. ;
Camacho, J. C. .
JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2008, 15 (Suppl 3) :81-90
[6]  
Bruzon MS, 2009, J NONLINEAR SYST APP, P151
[7]   Symmetries and conservation laws of a fifth-order KdV equation with time-dependent coefficients and linear damping [J].
de la Rosa, R. ;
Gandarias, M. L. ;
Bruzon, M. S. .
NONLINEAR DYNAMICS, 2016, 84 (01) :135-141
[8]   Weak self-adjoint differential equations [J].
Gandarias, M. L. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (26)
[9]  
Gazizov RK, 2007, Vestnik USATU, V9, P125, DOI DOI 10.1088/0031-8949/2009/T136/014016
[10]   Lie symmetries, Lagrangians and Hamiltonian framework of a class of nonlinear nonautonomous equations [J].
Guha, Partha ;
Ghose-Choudhury, A. .
CHAOS SOLITONS & FRACTALS, 2015, 75 :204-211