Variation and Minkowski dimension of fractal interpolation surface

被引:54
作者
Feng, Zhigang [1 ,2 ]
机构
[1] Jiangsu Univ, Fac Sci, Zhenjiang 212013, Jiangsu, Peoples R China
[2] Cardiff Univ, Sch Engn, Cardiff CF24 3AA, S Glam, Wales
关键词
bivariate continuous function; variation; iterated function system; fractal interpolation surface; Minkowski dimension;
D O I
10.1016/j.jmaa.2008.03.075
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The fractal interpolation surface on the rectangular domain is discussed in this paper. We study the properties of the oscillation and the variation of bivariate continuous functions. Then we discuss the special properties of bivariate fractal interpolation function, and estimate the value of its variation. Using the relation between the Minkowski dimension of the graph of continuous function and its variation, we obtain the exact value of the Minkowski dimension of the fractal interpolation surface. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:322 / 334
页数:13
相关论文
共 50 条
  • [1] BOX DIMENSION OF BILINEAR FRACTAL INTERPOLATION SURFACES
    Kong, Qing-Ge
    Ruan, Huo-Jun
    Zhang, Sheng
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2018, 98 (01) : 113 - 121
  • [2] Construction and box dimension of recurrent fractal interpolation surfaces
    Liang, Zhen
    Ruan, Huo-Jun
    JOURNAL OF FRACTAL GEOMETRY, 2021, 8 (03) : 261 - 288
  • [3] ON THE BOX DIMENSION FOR A CLASS OF NONAFFINE FRACTAL INTERPOLATION FUNCTIONS
    L.Dalla
    V.Drakopoulos
    M.Prodromou
    AnalysisinTheoryandApplications, 2003, (03) : 220 - 233
  • [4] Box-counting dimensions of fractal interpolation surfaces derived from fractal interpolation functions
    Feng, Zhigang
    Sun, Xiuqing
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 412 (01) : 416 - 425
  • [5] Minkowski Dimension and Explicit Tube Formulas for p-Adic Fractal Strings
    Lapidus, Michel L.
    Lu, Hung
    van Frankenhuijsen, Machiel
    FRACTAL AND FRACTIONAL, 2018, 2 (04) : 1 - 30
  • [6] Fuzzy Fractal Interpolation Surface and Its Applications
    Xiao, Xiaoping
    Li, Zisheng
    Gong, Wei
    AUTOMATIC MANUFACTURING SYSTEMS II, PTS 1 AND 2, 2012, 542-543 : 1141 - +
  • [7] Constrained and convex interpolation through rational cubic fractal interpolation surface
    Balasubramani, N.
    Prasad, M. Guru Prem
    Natesan, S.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (05) : 6308 - 6331
  • [8] Constrained and convex interpolation through rational cubic fractal interpolation surface
    N. Balasubramani
    M. Guru Prem Prasad
    S. Natesan
    Computational and Applied Mathematics, 2018, 37 : 6308 - 6331
  • [9] A Class of Many Parameters of Fractal Interpolation Surfaces and Its Variation
    Feng, Zhigang
    Mei, Jiang
    PROCEEDING OF THE 10TH INTERNATIONAL CONFERENCE ON INTELLIGENT TECHNOLOGIES, 2009, : 463 - 466
  • [10] MINKOWSKI DIMENSION FOR MEASURES
    Falconer, Kenneth J.
    Fraser, Jonathan M.
    Kaenmaki, Antti
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 151 (02) : 779 - 794