Variation and Minkowski dimension of fractal interpolation surface

被引:56
作者
Feng, Zhigang [1 ,2 ]
机构
[1] Jiangsu Univ, Fac Sci, Zhenjiang 212013, Jiangsu, Peoples R China
[2] Cardiff Univ, Sch Engn, Cardiff CF24 3AA, S Glam, Wales
关键词
bivariate continuous function; variation; iterated function system; fractal interpolation surface; Minkowski dimension;
D O I
10.1016/j.jmaa.2008.03.075
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The fractal interpolation surface on the rectangular domain is discussed in this paper. We study the properties of the oscillation and the variation of bivariate continuous functions. Then we discuss the special properties of bivariate fractal interpolation function, and estimate the value of its variation. Using the relation between the Minkowski dimension of the graph of continuous function and its variation, we obtain the exact value of the Minkowski dimension of the fractal interpolation surface. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:322 / 334
页数:13
相关论文
共 18 条
[1]  
[Anonymous], 1995, CURVES FRACTAL DIMEN
[2]   FRACTAL FUNCTIONS AND INTERPOLATION [J].
BARNSLEY, MF .
CONSTRUCTIVE APPROXIMATION, 1986, 2 (04) :303-329
[3]  
BARNSLEY MF, 1986, FRACTAL EVERYWHERE
[4]   A general construction of fractal interpolation functions on grids of Rn [J].
Bouboulis, P. ;
Dalla, L. .
EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2007, 18 :449-476
[5]   Closed fractal interpolation surfaces [J].
Bouboulis, P. ;
Dalla, L. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 327 (01) :116-126
[6]   Construction of recurrent bivariate fractal interpolation surfaces and computation of their box-counting dimension [J].
Bouboulis, P. ;
Dalla, Leoni ;
Drakopoulos, V. .
JOURNAL OF APPROXIMATION THEORY, 2006, 141 (02) :99-117
[7]   Bivariate fractal interpolation functions on grids [J].
Dalla, L .
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2002, 10 (01) :53-58
[8]   EVALUATING THE FRACTAL DIMENSION OF SURFACES [J].
DUBUC, B ;
ZUCKER, SW ;
TRICOT, C ;
QUINIOU, JF ;
WEHBI, D .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1989, 425 (1868) :113-127
[9]  
DUBUC B, 1988, CR ACAD SCI I-MATH, V306, P531
[10]   FRACTAL INTERPOLATION SURFACES AND A RELATED 2-D MULTIRESOLUTION ANALYSIS [J].
GERONIMO, JS ;
HARDIN, D .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1993, 176 (02) :561-586