Partial proximal point method for nonmonotone equilibrium problems

被引:14
作者
Konnov, IV [1 ]
机构
[1] Kazan VI Lenin State Univ, Dept Appl Math, Kazan 420008, Russia
基金
俄罗斯基础研究基金会;
关键词
equilibrium problems; nonmonotone bifunctions; partial proximal method;
D O I
10.1080/10556780500094838
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We consider a general equilibrium problem defined on a convex set, whose cost bifunction may be nonmonotone. We show that this problem can be solved by the inexact partial proximal point method. These results can be viewed as a generalization of the known convergence properties of the usual proximal point method.
引用
收藏
页码:373 / 384
页数:12
相关论文
共 22 条
[1]  
Bertsekas D., 2019, Reinforcement Learning and Optimal Control
[2]   PARTIAL PROXIMAL MINIMIZATION ALGORITHMS FOR CONVEX-PROGRAMMING [J].
BERTSEKAS, DP ;
TSENG, P .
SIAM JOURNAL ON OPTIMIZATION, 1994, 4 (03) :551-572
[3]  
BIAOCCHI C, 1984, VARIATIONAL QUASIVAR
[4]  
Blum E., 1994, MATH STUDENT, V63, P127
[5]   ADDITIVELY DECOMPOSED QUASI-CONVEX FUNCTIONS [J].
CROUZEIX, JP ;
LINDBERG, PO .
MATHEMATICAL PROGRAMMING, 1986, 35 (01) :42-57
[6]   Characterization of nonsmooth semistrictly quasiconvex and strictly quasiconvex functions [J].
Daniilidis, A ;
Hadjisavvas, N .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1999, 102 (03) :525-536
[7]   ADDITIVELY DECOMPOSED QUASICONVEX FUNCTIONS [J].
DEBREU, G ;
KOOPMANS, TC .
MATHEMATICAL PROGRAMMING, 1982, 24 (01) :1-38
[8]   ON THE DOUGLAS-RACHFORD SPLITTING METHOD AND THE PROXIMAL POINT ALGORITHM FOR MAXIMAL MONOTONE-OPERATORS [J].
ECKSTEIN, J ;
BERTSEKAS, DP .
MATHEMATICAL PROGRAMMING, 1992, 55 (03) :293-318
[9]   Pseudomonotone variational inequalities: Convergence of proximal methods [J].
El Farouq, N .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2001, 109 (02) :311-326
[10]  
Flam SD, 1997, MATH PROGRAM, V78, P29