LEARNING SUBJECT-INVARIANT REPRESENTATIONS FROM SPEECH-EVOKED EEG USING VARIATIONAL AUTOENCODERS

被引:10
作者
Bollens, Lies [1 ,2 ]
Francart, Tom [2 ]
Van Hamme, Hugo [1 ]
机构
[1] Katholieke Univ Leuven, PSI, Dept Elect Engn ESAT, Leuven, Belgium
[2] Katholieke Univ Leuven, ExpORL, Dept Neurosci, Leuven, Belgium
来源
2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP) | 2022年
基金
欧洲研究理事会;
关键词
factorized hierarchical variational autoencoder; speech decoding; EEG; unsupervised learning; domain generalization; ENTRAINMENT;
D O I
10.1109/ICASSP43922.2022.9747297
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
The electroencephalogram (EEG) is a powerful method to understand how the brain processes speech. Linear models have recently been replaced for this purpose with deep neural networks and yield promising results. In related EEG classification fields, it is shown that explicitly modeling subject-invariant features improves generalization of models across subjects and benefits classification accuracy. In this work, we adapt factorized hierarchical variational autoencoders to exploit parallel EEG recordings of the same stimuli. We model EEG into two disentangled latent spaces. Subject accuracy reaches 98:96% and 1:60% on respectively the subject and content latent space, whereas binary content classification experiments reach an accuracy of 51:51% and 62:91% on respectively the subject and content latent space.
引用
收藏
页码:1256 / 1260
页数:5
相关论文
共 23 条
[1]  
Accou Bernd, 2021, ARXIV210506844CSEESS
[2]  
BIDGOLY AJ, 2020, SECURITY, V93
[3]   Auditory stimulus-response modeling with a match-mismatch task [J].
de Cheveigne, Alain ;
Slaney, Malcolm ;
Fuglsang, Soren A. ;
Hjortkjaer, Jens .
JOURNAL OF NEURAL ENGINEERING, 2021, 18 (04)
[4]   Decoding the auditory brain with canonical component analysis [J].
de Cheveigne, Alain ;
Wong, Daniel D. E. ;
Di Liberto, Giovanni M. ;
Hjortkjaer, Jens ;
Slaney, Malcolm ;
Lalor, Edmund .
NEUROIMAGE, 2018, 172 :206-216
[5]  
Di Liberto Giovanni, NEURAL REPRESENTATIO
[6]   Low-Frequency Cortical Entrainment to Speech Reflects Phoneme-Level Processing [J].
Di Liberto, Giovanni M. ;
O'Sullivan, James A. ;
Lalor, Edmund C. .
CURRENT BIOLOGY, 2015, 25 (19) :2457-2465
[7]   APEX 3: a multi-purpose test platform for auditory psychophysical experiments [J].
Francart, Tom ;
van Wieringen, Astrid ;
Wouters, Jan .
JOURNAL OF NEUROSCIENCE METHODS, 2008, 172 (02) :283-293
[8]   Learning Subject-Generalized Topographical EEG Embeddings Using Deep Variational Autoencoders and Domain-Adversarial Regularization [J].
Hagad, Juan Lorenzo ;
Kimura, Tsukasa ;
Fukui, Ken-ichi ;
Numao, Masayuki .
SENSORS, 2021, 21 (05) :1-29
[9]  
Hsu Wei-Ning, 2017, ARXIV170907902CSEESS
[10]  
Hsu Wei-Ning, 2018, ARXIV180403201CSEESS