Interaction vertex imaging (IVI) for carbon ion therapy monitoring: a feasibility study

被引:72
作者
Henriquet, P. [1 ,2 ,3 ]
Testa, E. [1 ,2 ,3 ]
Chevallier, M. [1 ,2 ,3 ]
Dauvergne, D. [1 ,2 ,3 ]
Dedes, G. [1 ,2 ,3 ]
Freud, N. [4 ,5 ,6 ,7 ,8 ,9 ]
Krimmer, J. [1 ,2 ,3 ]
Letang, J. M. [4 ,5 ,6 ,7 ,8 ,9 ]
Ray, C. [1 ,2 ,3 ]
Richard, M-H [1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 ]
Sauli, F. [10 ]
机构
[1] Inst Phys Nucl, F-69003 Villeurbanne, France
[2] Univ Lyon, F-69003 Villeurbanne, France
[3] Univ Lyon 1, CNRS, IN2P3, UMR 5822, F-69622 Villeurbanne, France
[4] Univ Lyon, CREATIS, Lyon, France
[5] CNRS, UMR 5220, Lyon, France
[6] INSERM, U1044, F-69008 Lyon, France
[7] INSA Lyon, Lyon, France
[8] Univ Lyon 1, F-69365 Lyon, France
[9] Ctr Leon Berard, F-69373 Lyon, France
[10] TERA Fdn, Novara, Italy
关键词
NUCLEAR FRAGMENTATION; GEANT4; BEAM; TRANSPORT; TOOLKIT; MODELS;
D O I
10.1088/0031-9155/57/14/4655
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Proton imaging can be seen as a powerful technique for online monitoring of ion range during carbon ion therapy irradiations. Indeed, a large number of secondary protons are created during nuclear reactions, and many of these protons are likely to escape from the patient even for deep-seated tumors, carrying accurate information on the reaction vertex position. Two detection techniques have been considered: (i) double-proton detection by means of two forward-located trackers and (ii) single-proton detection in coincidence with the incoming carbon ion detected by means of a beam hodoscope. Geant4 simulations, validated by proton yield measurements performed at GANIL and GSI, show that ion-range monitoring is accessible on a pencil-beam basis with the single-proton imaging technique. Millimetric precision on the Bragg peak position is expected in the ideal case of homogeneous targets. The uncertainties in more realistic conditions should be investigated, in particular the influence of tissue heterogeneity in the very last part of the ion path (about 20 mm).
引用
收藏
页码:4655 / 4669
页数:15
相关论文
共 24 条
[1]   Advanced Quality Assurance for CNAO [J].
Amaldi, U. ;
Hajdas, W. ;
Iliescu, S. ;
Malakhov, N. ;
Samarati, J. ;
Sauli, F. ;
Watts, D. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2010, 617 (1-3) :248-249
[2]   Geometry and physics of the Geant4 toolkit for high and medium energy applications [J].
Apostolakis, J. ;
Asai, M. ;
Bogdanov, A. G. ;
Burkhardt, H. ;
Cosmo, G. ;
Elles, S. ;
Folger, G. ;
Grichine, V. M. ;
Gumplinger, P. ;
Heikkinen, A. ;
Hrivnacova, I. ;
Ivanchenko, V. N. ;
Jacquemier, J. ;
Koi, T. ;
Kokoulin, R. P. ;
Kossov, M. ;
Kurashige, H. ;
McLaren, I. ;
Link, O. ;
Maire, M. ;
Pokorski, W. ;
Sasaki, T. ;
Starkov, N. ;
Urban, L. ;
Wright, D. H. .
RADIATION PHYSICS AND CHEMISTRY, 2009, 78 (10) :859-873
[3]   First Test Results Of MIMOSA-26, A Fast CMOS Sensor With Integrated Zero Suppression And Digitized Output [J].
Baudot, J. ;
Bertolone, G. ;
Brogna, A. ;
Claus, G. ;
Colledani, C. ;
Degerli, Y. ;
De Masi, R. ;
Dorokhov, A. ;
Doziere, G. ;
Dulinski, W. ;
Gelin, M. ;
Goffe, M. ;
Himmi, A. ;
Guilloux, F. ;
Hu-Guo, C. ;
Jaaskelainen, K. ;
Koziel, M. ;
Morel, F. ;
Orsini, F. ;
Specht, M. ;
Valin, I. ;
Voutsinas, G. ;
Winter, M. .
2009 IEEE NUCLEAR SCIENCE SYMPOSIUM CONFERENCE RECORD, VOLS 1-5, 2009, :1169-+
[4]   Benchmarking nuclear models of FLUKA and GEANT4 for carbon ion therapy [J].
Bohlen, T. T. ;
Cerutti, F. ;
Dosanjh, M. ;
Ferrari, A. ;
Gudowska, I. ;
Mairani, A. ;
Quesada, J. M. .
PHYSICS IN MEDICINE AND BIOLOGY, 2010, 55 (19) :5833-5847
[5]   Nuclear reaction measurements of 95 MeV/u 12C interactions on PMMA for hadrontherapy [J].
Braunn, B. ;
Labalme, M. ;
Ban, G. ;
Chevallier, M. ;
Colin, J. ;
Cussol, D. ;
Dauvergne, D. ;
Fontbonne, J. M. ;
Haas, F. ;
Guertin, A. ;
Lebhertz, D. ;
Le Foulher, F. ;
Pautard, C. ;
Ray, C. ;
Rousseau, M. ;
Salsac, M. D. ;
Stuttge, L. ;
Testa, E. ;
Testa, M. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2011, 269 (22) :2676-2684
[6]   Charged hadron tumour therapy monitoring by means of PET [J].
Enghardt, W ;
Crespo, P ;
Fiedler, F ;
Hinz, R ;
Parodi, K ;
Pawelke, J ;
Pönisch, F .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2004, 525 (1-2) :284-288
[7]  
Fasso' A., 2005, CERN-2005-10
[8]   Optimization of GEANT4 settings for Proton Pencil Beam Scanning simulations using GATE [J].
Grevillot, Loic ;
Frisson, Thibault ;
Zahra, Nabil ;
Bertrand, Damien ;
Stichelbaut, Frederic ;
Freud, Nicolas ;
Sarrut, David .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2010, 268 (20) :3295-3305
[9]   Ion beam transport in tissue-like media using the Monte Carlo code SHIELD-HIT [J].
Gudowska, I ;
Sobolevsky, N ;
Andreo, P ;
Belkic, D ;
Brahme, A .
PHYSICS IN MEDICINE AND BIOLOGY, 2004, 49 (10) :1933-1958
[10]   Secondary beam fragments produced by 200 MeVu-1 12C ions in water and their dose contributions in carbon ion radiotherapy [J].
Gunzert-Marx, K. ;
Iwase, H. ;
Schardt, D. ;
Simon, R. S. .
NEW JOURNAL OF PHYSICS, 2008, 10