SOLUTION TO THE STOKES BOUNDARY-VALUE PROBLEM ON AN ELLIPSOID OF REVOLUTION

被引:43
作者
Martinec, Z. [1 ]
Grafarend, E. W. [2 ]
机构
[1] Charles Univ, Fac Math & Phys, Dept Geophys, CR-18000 Prague 8, Czech Republic
[2] Univ Stuttgart, Dept Geodet Sci, D-70174 Stuttgart, Germany
关键词
the geoid; ellipsoidal harmonics; the first eccentricity; addition theorem;
D O I
10.1023/A:1023380427166
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
We have constructed Green's function to Stokes's boundary-value problem with the gravity data distributed over an ellipsoid of revolution. We show that the problem has a unique solution provided that the first eccentricity to of the ellipsoid of revolution is less than 0-65041. The ellipsoidal Stokes function describing the effect of ellipticity of the boundary is expressed in the O(e(0)(2))-approximation as a finite sum of elementary functions which describe analytically the behaviour of the ellipsoidal Stokes function at the singular point Psi=0. We prove that the degree of singularity of the ellipsoidal Stokes function in the vicinity of its singular point is the same as that of the spherical Stokes function.
引用
收藏
页码:103 / 129
页数:27
相关论文
共 17 条
  • [1] Abramowitz M., 1970, HDB MATH FUNCTIONS
  • [2] [Anonymous], 1980, Gos. Izd-vo Fiz.-Mat. Literatury
  • [3] Arfken G., 1968, MATH METHODS PHYS
  • [4] HECK B, 1991, 407 OH STAT U DEP GE
  • [5] Heiskanen W.A., 1967, PHYS GEODESY, DOI DOI 10.1007/B139113
  • [6] Hobson E. W, 1965, The Theory of Spherical and Ellipsoidal Harmonics
  • [7] HOLOTA P, 1995, 3 HOT MAR S MATH GEO
  • [8] Khersonskii V.K., 1989, QUANTUM THEORY ANGUL
  • [9] Mangulis V., 1965, HDB SERIES SCI ENG
  • [10] Formulation of the boundary-value problem for geoid determination with a higher-degree reference field
    Martinec, Z
    Vanicek, P
    [J]. GEOPHYSICAL JOURNAL INTERNATIONAL, 1996, 126 (01) : 219 - 228