Combined geometric-texture image classification

被引:0
作者
Aujol, JF [1 ]
Chan, T
机构
[1] ENS, CNRS, UMR 8536, CMLA, Cachan, France
[2] Univ Calif Los Angeles, Div Phys Sci, Coll Letters & Sci, Los Angeles, CA 90024 USA
来源
VARIATIONAL, GEOMETRIC, AND LEVEL SET METHODS IN COMPUTER VISION, PROCEEDINGS | 2005年 / 3752卷
关键词
classification; texture; geometrical image; decomposition; logic model; level-set; active contour; PDE; wavelets;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a framework to carry out supervised classification of images containing both textured and non textured areas. Our approach is based on active contours. Using a decomposition algorithm inspired by the recent work of Y. Meyer, we can get two channels from the original image to classify: one containing the geometrical information, and the other the texture. Using the logic framework by Chan and Sandberg, we can then combine the information from both channels in a user definable way. Thus, we design a classification algorithm in which the different classes are characterized both from geometrical and textured features. Moreover, the user can choose different ways to combine information.
引用
收藏
页码:161 / 172
页数:12
相关论文
共 35 条
[1]  
[Anonymous], APPL MATH SCI
[2]  
AUJOL J.-F., 2005, APPL ANAL, V84, P15
[3]   Dual norms and image decomposition models [J].
Aujol, JF ;
Chambolle, A .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2005, 63 (01) :85-104
[4]   Wavelet-based level set evolution for classification of textured images [J].
Aujol, JF ;
Aubert, G ;
Blanc-Féraud, L .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2003, 12 (12) :1634-1641
[5]   Image decomposition into a bounded variation component and an oscillating component [J].
Aujol, JF ;
Aubert, G ;
Blanc-Féraud, L ;
Chambolle, A .
JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2005, 22 (01) :71-88
[6]  
AUJOL JF, 2004, ACIVS 2004
[7]  
AUJOL JF, 2004, 0465 CAM
[8]   Simultaneous structure and texture image inpainting [J].
Bertalmio, M ;
Vese, L ;
Sapiro, G ;
Osher, S .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2003, 12 (08) :882-889
[9]   Bayesian image classification using Markov random fields [J].
Berthod, M ;
Kato, Z ;
Yu, S ;
Zerubia, J .
IMAGE AND VISION COMPUTING, 1996, 14 (04) :285-295
[10]  
Brox T, 2004, LECT NOTES COMPUT SC, V3022, P578