Thermogravimetric-mass spectrometric analysis of lignocellulosic and marine biomass pyrolysis

被引:335
作者
Sanchez-Silva, L. [1 ]
Lopez-Gonzalez, D. [1 ]
Villasenor, J. [1 ]
Sanchez, P. [1 ]
Valverde, J. L. [1 ]
机构
[1] Univ Castilla La Mancha, Dept Chem Engn, E-13071 Ciudad Real, Spain
关键词
TGA-MS; Pyrolysis; Lignocellulosic biomass; Microalgae; Kinetics model; KINETICS; CELLULOSE; COMPONENTS; MICROALGAE; MODEL;
D O I
10.1016/j.biortech.2012.01.001
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
The pyrolysis characteristics of three lignocellulosic biomasses (fir wood, eucalyptus and pine bark) and a marine biomass (Nannochloropsis gaditana microalgae) were investigated by thermogravimetric analysis coupled with mass spectrometry (TGA-MS). Thermal degradation of lignocellulosic biomass was divided into four zones, corresponding to the decomposition of their main components (cellulose, hemicellulose and lignin) and a first step associated to water removal. Differences in volatile matter and cellulose content of lignocellulosic species resulted in different degradation rates. Microalgae pyrolysis occurred in three stages due to the main components of them (proteins), which are greatly different from lignocellulosic biomass. Heating rate effect was also studied. The main gaseous products formed were CO2, light hydrocarbons and H2O. H-2 was detected at high temperatures, being associated to secondary reactions (char self-gasification). Pyrolysis kinetics were studied using a multiple-step model. The proposed model successfully predicted the pyrolytic behaviour of these samples resulting to be statistically meaningful. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:163 / 172
页数:10
相关论文
共 35 条
[1]   Eucalyptus kraft pulp production: Thermogravimetry monitoring [J].
Barneto, Agustin G. ;
Vila, Carlos ;
Ariza, Jose .
THERMOCHIMICA ACTA, 2011, 520 (1-2) :110-120
[2]  
Basu P, 2010, BIOMASS GASIFICATION
[3]   Pyrolysis kinetics of almond shells and olive stones considering their organic fractions [J].
Caballero, JA ;
Conesa, JA ;
Font, R ;
Marcilla, A .
JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 1997, 42 (02) :159-175
[4]   Thermal degradation studies and kinetic modeling of cardoon (Cynara cardunculus) pyrolysis using thermogravimetric analysis (TGA) [J].
Damartzis, Th ;
Vamvuka, D. ;
Sfakiotakis, S. ;
Zabaniotou, A. .
BIORESOURCE TECHNOLOGY, 2011, 102 (10) :6230-6238
[5]   Kinetic models discrimination for the high pressure WGS reaction over a commercial CoMo catalyst [J].
de la Osa, A. R. ;
De Lucas, A. ;
Romero, A. ;
Valverde, J. L. ;
Sanchez, P. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (16) :9673-9684
[6]   Kinetic model of the n-octane hydroisomerization on PtBeta agglomerated catalyst:: Influence of the reaction conditions [J].
de Lucas, A ;
Sánchez, P ;
Dorado, F ;
Ramos, MJ ;
Valverde, JL .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2006, 45 (03) :978-985
[7]  
Froment GF., 1990, CHEM REACTOR ANAL DE
[8]   A round-robin study of cellulose pyrolysis kinetics by thermogravimetry [J].
Gronli, M ;
Antal, MJ ;
Várhegyi, G .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 1999, 38 (06) :2238-2244
[9]   Thermogravimetric analysis and devolatilization kinetics of wood [J].
Gronli, MG ;
Várhegyi, G ;
Di Blasi, C .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2002, 41 (17) :4201-4208
[10]   Hydrogen-rich fuel gas from rice straw via microwave-induced pyrolysis [J].
Huang, Y. F. ;
Kuan, W. H. ;
Lo, S. L. ;
Lin, C. F. .
BIORESOURCE TECHNOLOGY, 2010, 101 (06) :1968-1973