Rational S1-equivariant homotopy theory

被引:8
作者
Scull, L [1 ]
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
关键词
equivariant homotopy; minimal model; rationalization;
D O I
10.1090/S0002-9947-01-02790-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give an algebraicization of rational S-1-equivariant homotopy theory. There is an algebraic category of "T-systems" which is equivalent to the homotopy category of rational S-1-simply connected S-1-spaces. There is also a theory of "minimal models" for T-systems, analogous to Sullivan's minimal algebras. Each S-1-space has an associated minimal T-system which encodes all of its rational homotopy information, including its rational equivariant cohomology and Postnikov decomposition.
引用
收藏
页码:1 / 45
页数:45
相关论文
共 21 条
  • [1] ALLDAY C, 1984, HOUSTON J MATH, V10, P15
  • [2] BOUSFIELD AK, 1976, MEM AM MATH SOC, V8, pR4
  • [3] Bredon G E, 1972, Introduction to compact transformation groups, V46
  • [4] Bredon G. E., 1967, LECT NOTES MATH, V34
  • [5] REAL HOMOTOPY THEORY OF KAHLER MANIFOLDS
    DELIGNE, P
    GRIFFITHS, P
    MORGAN, J
    SULLIVAN, D
    [J]. INVENTIONES MATHEMATICAE, 1975, 29 (03) : 245 - 274
  • [6] SYSTEMS OF FIXED-POINT SETS
    ELMENDORF, AD
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 277 (01) : 275 - 284
  • [7] ON THE EQUIVARIANT FORMALITY OF KAHLER-MANIFOLDS WITH FINITE-GROUP ACTION
    FINE, BL
    TRIANTAFILLOU, G
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1993, 45 (06): : 1200 - 1210
  • [8] FINE BL, 1992, THESIS
  • [9] GOLASINSKI M, 1997, C MATH, V73, P83
  • [10] GREENLEES JPC, 1998, MEM AM MATH SOC, V138