Depth Information Enhancement Using Block Matching and Image Pyramiding Stereo Vision Enabled RGB-D Sensor

被引:18
作者
Jacob, Sunil [1 ]
Menon, Varun G. [2 ]
Joseph, Saira [3 ]
机构
[1] SCMS Sch Engn & Technol, Ctr Robot, Karukutty 683576, India
[2] SCMS Sch Engn & Technol, Dept Comp Sci & Engn, Karukutty 683576, India
[3] SCMS Sch Engn & Technol, Dept Elect & Commun Engn, Karukutty 683576, India
关键词
Block matching; depth sensing; disparity estimation; image pyramiding; RGB-D sensor; stereo vision; KINECT V2; RECOGNITION; PERFORMANCE; CAMERAS;
D O I
10.1109/JSEN.2020.2969324
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Depth sensing devices enabled with an RGB camera, can be used to augment conventional images with depth information on a per-pixel basis. Currently available RGB-D sensors include the Asus Xtion Pro, Microsoft Kinect and Intel RealSense((TM)). However, these sensors have certain limitations. Objects that are shiny, transparent or have an absorbing matte surface, create problems due to reflection. Also, there can be an interference in the IR pattern due to the use of multiple RGB-D cameras and the depth information is correctly interpreted only for short distances between the camera and the object. The proposed system, block matching stereo vision (BMSV) uses an RGB-D camera with rectified/non-rectified block matching and image pyramiding along with dynamic programming for human tracking and capture of accurate depth information from shiny/transparent objects. Here, the IR emitter generates a known IR pattern and the depth information is recovered by comparing the multiple views of the focused object. The depth map of the BMSV RGB-D camera and the resultant disparity map are fused. This fills any void regions that may have emerged due to interference or because of the reflective transparent surfaces and an enhanced dense stereo image is obtained. The proposed method is applied to a 3D realistic head model, a functional magnetic resonance image (fMRI) and the results are presented. Results showed an improvement in speed and accuracy of RGB-D sensors which in turn provided accurate depth information density irrespective of the object surface.
引用
收藏
页码:5406 / 5414
页数:9
相关论文
共 20 条
[11]   Assessment and Calibration of a RGB-D Camera (Kinect v2 Sensor) Towards a Potential Use for Close-Range 3D Modeling [J].
Lachat, Elise ;
Macher, Helene ;
Landes, Tania ;
Grussenmeyer, Pierre .
REMOTE SENSING, 2015, 7 (10) :13070-13097
[12]   Neurologic Manifestations of Hospitalized Patients With Coronavirus Disease 2019 in Wuhan, China [J].
Mao, Ling ;
Jin, Huijuan ;
Wang, Mengdie ;
Hu, Yu ;
Chen, Shengcai ;
He, Quanwei ;
Chang, Jiang ;
Hong, Candong ;
Zhou, Yifan ;
Wang, David ;
Miao, Xiaoping ;
Li, Yanan ;
Hu, Bo .
JAMA NEUROLOGY, 2020, 77 (06) :683-690
[13]   SDN-Powered Humanoid With Edge Computing for Assisting Paralyzed Patients [J].
Menon, Varun G. ;
Jacob, Sunil ;
Joseph, Saira ;
Almagrabi, Alaa Omran .
IEEE INTERNET OF THINGS JOURNAL, 2020, 7 (07) :5874-5881
[14]   Secure Brain-to-Brain Communication With Edge Computing for Assisting Post-Stroke Paralyzed Patients [J].
Rajesh, Sreeja ;
Paul, Varghese ;
Menon, Varun G. ;
Jacob, Sunil ;
Vinod, P. .
IEEE INTERNET OF THINGS JOURNAL, 2020, 7 (04) :2531-2538
[15]  
Riahi D, 2018, MID EAST CONF BIO, P177, DOI 10.1109/MECBME.2018.8402429
[16]  
Santoso PS, 2017, IEEE IMAGE PROC, P3365, DOI 10.1109/ICIP.2017.8296906
[17]   Fast Motion Object Detection Algorithm Using Complementary Depth Image on an RGB-D Camera [J].
Sun, Chi-Chia ;
Wang, Yi-Hua ;
Sheu, Ming-Hwa .
IEEE SENSORS JOURNAL, 2017, 17 (17) :5728-5734
[18]  
Ting-Hsuan Chien, 2017, 2017 International Conference on Applied System Innovation (ICASI). Proceedings, P1554, DOI 10.1109/ICASI.2017.7988224
[19]   Brain-Controlled Adaptive Lower Limb Exoskeleton for Rehabilitation of Post-Stroke Paralyzed [J].
Vinoj, P. G. ;
Jacob, Sunil ;
Menon, Varun G. ;
Rajesh, Sreeja ;
Khosravi, Mohammad Reza .
IEEE ACCESS, 2019, 7 :132628-132648
[20]   Color-Guided Depth Recovery From RGB-D Data Using an Adaptive Autoregressive Model [J].
Yang, Jingyu ;
Ye, Xinchen ;
Li, Kun ;
Hou, Chunping ;
Wang, Yao .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2014, 23 (08) :3443-3458