GLOBALLY STRUCTURED THREE-DIMENSIONAL ANALYSIS-SUITABLE T-SPLINES: DEFINITION, LINEAR INDEPENDENCE AND m-GRADED LOCAL REFINEMENT

被引:16
作者
Morgenstern, Philipp [1 ]
机构
[1] Univ Bonn, D-53115 Bonn, Germany
关键词
isogeometric analysis; trivariate T-splines; analysis-suitability; dual-compatibility; adaptive mesh refinement;
D O I
10.1137/15M102229X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper addresses the linear independence of T-splines that correspond to refinements of three-dimensional tensor-product meshes. We give an abstract definition of analysis-suitability and prove that it is equivalent to dual-compatibility, which guarantees linear independence of the T-spline blending functions. In addition, we present a local refinement algorithm that generates analysis-suitable meshes and has linear computational complexity in terms of the number of marked and generated mesh elements.
引用
收藏
页码:2163 / 2186
页数:24
相关论文
共 21 条
[1]   Adaptive finite element methods with convergence rates [J].
Binev, P ;
Dahmen, W ;
DeVore, R .
NUMERISCHE MATHEMATIK, 2004, 97 (02) :219-268
[2]   Linear independence of the T-spline blending functions associated with some particular T-meshes [J].
Buffa, A. ;
Cho, D. ;
Sangalli, G. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2010, 199 (23-24) :1437-1445
[3]  
Buffa A., COMPUT AIDE IN PRESS
[4]   Adaptive isogeometric methods with hierarchical splines: Error estimator and convergence [J].
Buffa, Annalisa ;
Giannelli, Carlotta .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2016, 26 (01) :1-25
[5]   Axioms of adaptivity [J].
Carstensen, C. ;
Feischl, M. ;
Page, M. ;
Praetorius, D. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 67 (06) :1195-1253
[6]   Mathematical analysis of variational isogeometric methods [J].
da Veiga, L. Beirao ;
Buffa, A. ;
Sangalli, G. ;
Vazquez, R. .
ACTA NUMERICA, 2014, 23 :157-287
[7]   ANALYSIS-SUITABLE T-SPLINES OF ARBITRARY DEGREE: DEFINITION, LINEAR INDEPENDENCE AND APPROXIMATION PROPERTIES [J].
Da Veiga, L. Beirao ;
Buffa, A. ;
Sangalli, G. ;
Vazquez, R. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2013, 23 (11) :1979-2003
[8]   Analysis-Suitable T-splines are Dual-Compatible [J].
da Veiga, L. Beirao ;
Buffa, A. ;
Cho, D. ;
Sangalli, G. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2012, 249 :42-51
[9]   Polynomial splines over locally refined box-partitions [J].
Dokken, Tor ;
Lyche, Tom ;
Pettersen, Kjell Fredrik .
COMPUTER AIDED GEOMETRIC DESIGN, 2013, 30 (03) :331-356
[10]   Hierarchical T-splines: Analysis-suitability, Bezier extraction, and application as an adaptive basis for isogeometric analysis [J].
Evans, E. J. ;
Scott, M. A. ;
Li, X. ;
Thomas, D. C. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2015, 284 :1-20