Algorithm for retrieving lidar ratios at 1064 nm from space-based lidar backscatter data

被引:1
|
作者
Vaughan, M [1 ]
机构
[1] NASA Langley Res Ctr, SAIC, Hampton, VA 23681 USA
来源
关键词
lidar; lidar ratio; extinction; algorithm;
D O I
10.1117/12.510770
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Accurate estimation of cloud and aerosol optical depths using backscatter lidar data requires knowledge of the particulate lidar ratio (i.e., the extinction-to-backscatter ratio). In those cases for which a measurement of molecular backscatter can be made on the far side of a layer, knowledge of the lidar ratio can be derived directly from the data. However, obtaining a reliable clear air constraint is a function of layer optical depth, system sensitivity and overall signal-to-noise ratio (SNR). To date, the design constraints imposed on space-based lidars such as LITE and CALIPSO have rendered the use of this retrieval technique virtually impossible for measurements made at 1064 nm. Layers to which the constraint method can be successfully applied are assumed to be homogeneous with respect to particle composition and size distribution, and therefore are characterized by lidar ratios that are range-invariant throughout the layer. By extending this assumption of homogeneity to include the layer backscatter color ratio, this work derives a new technique that simultaneously retrieves both the color ratio and the 1064 nm lidar ratio from two wavelength elastic backscatter lidar measurements of transmissive clouds and/or lofted aerosol layers. Retrieval examples are illustrated using data obtained from LITE. Initial error estimates derived from numerical experiments using simulated data show the retrieval of the backscatter color ratio to be stable, even in the presence of considerable noise in the data.
引用
收藏
页码:104 / 115
页数:12
相关论文
共 50 条
  • [1] Retrieval of cloud optical parameters from space-based backscatter lidar data
    Balin, YS
    Samoilova, SV
    Krekova, MM
    Winker, DM
    APPLIED OPTICS, 1999, 38 (30) : 6365 - 6373
  • [2] Retrieval of cloud optical parameters from space-based backscatter lidar data
    Balin, Yuri S.
    Samoilova, Svetlana V.
    Krekova, Margarita M.
    Winker, David M.
    Applied Optics, 1999, 38 (30): : 6365 - 6373
  • [3] Space-based laser for a cloud and aerosol backscatter lidar
    Stadler, JH
    Hostetler, CA
    Williams-Byrd, J
    Hovis, F
    Bradford, CM
    Schwiesow, R
    SPACE TECHNOLOGY AND APPLICATIONS INTERNATIONAL FORUM - 1999, PTS ONE AND TWO, 1999, 458 : 602 - 603
  • [4] CALIBRATION OF 1064 nm-BACKSCATTER PROFILES WITH A MULTIWAVELENGTH RAMAN LIDAR
    Navas-Guzman, F.
    Guerrero-Rascado, J. L.
    Bravo-Aranda, J. A.
    Alados-Arboledas, L.
    ROMANIAN JOURNAL OF PHYSICS, 2011, 56 (3-4): : 460 - 466
  • [5] Space-Based Lidar Systems
    Sun, Xiaoli
    2012 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2012,
  • [6] Toward retrieving properties of the tenuous atmosphere using space-based lidar measurements
    Stephens, GL
    Engelen, RJ
    Vaughan, M
    Anderson, TL
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2001, 106 (D22) : 28143 - 28157
  • [7] CALIPSO lidar calibration at 1064 nm: version 4 algorithm
    Vaughan, Mark
    Garnier, Anne
    Josset, Damien
    Avery, Melody
    Lee, Kam-Pui
    Liu, Zhaoyan
    Hunt, William
    Pelon, Jacques
    Hu, Yongxiang
    Burton, Sharon
    Hair, Johnathan
    Tackett, Jason L.
    Getzewich, Brian
    Kar, Jayanta
    Rodier, Sharon
    ATMOSPHERIC MEASUREMENT TECHNIQUES, 2019, 12 (01) : 51 - 82
  • [8] Retrieving the aerosol lidar ratio profile by combining ground- and space-based elastic lidars
    Mao Feiyue
    Gong Wei
    Ma Yingying
    OPTICS LETTERS, 2012, 37 (04) : 617 - 619
  • [9] New lasers push space-based Lidar
    Grant, WB
    PHOTONICS SPECTRA, 1998, 32 (09) : 43 - 44
  • [10] Space-based lidar for monitoring the Martian canyons
    Smirnov, Leonid
    Ryzhova, Victoria
    Grishkanich, Aleksander
    Paklinov, Nikita
    Kozlov, Stanislav
    Hvorostovsky, Artemia
    Antonov, Anton
    Kolmakov, Egor
    Kravtsov, Ilya
    Hafizov, Nail
    LIDAR TECHNOLOGIES, TECHNIQUES, AND MEASUREMENTS FOR ATMOSPHERIC REMOTE SENSING XIII, 2017, 10429