Compact linear operators between probabilistic normed spaces

被引:0
作者
Nourouzi, Kourosh [1 ]
机构
[1] KN Toosi Univ Technol, Dept Math, Tehran, Iran
来源
OPERATOR ALGEBRAS, OPERATOR THEORY AND APPLICATIONS | 2008年 / 181卷
关键词
compact operator; PN-space; bounded set; N-compact set; weakly bounded operator; strongly bounded operator;
D O I
10.1007/978-3-7643-8684-9_17
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A pair (X, N) is said to be a probabilistic normed space if X is a real vector space, N is a mapping from X into the set of all distribution functions (for x is an element of X, the distribution function N(x) is denoted by N-x, and N-x(t) is the value N-x at t is an element of R) satisfying the following conditions: (N1) N-x(0) = 0, (N2) N-x (t) = 1 for all t > 0 iff x = 0, (N3) N-alpha x(t) = N-x(t/vertical bar alpha vertical bar) for all alpha is an element of R\{0}, (N4) Nx+y(s + t) >= min{N-x(s), N-y(t)} for all x, y is an element of X, and s, t is an element of R-0(+). In this article, we study compact linear operators between probabilistic normed spaces.
引用
收藏
页码:347 / 353
页数:7
相关论文
共 8 条
  • [1] Continuity properties of probabilistic norms
    Alsina, C
    Schweizer, B
    Sklar, A
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 208 (02) : 446 - 452
  • [2] Alsina C., 1993, ACQUATIONES MATH, V46, P91
  • [3] [Anonymous], SOV MATH DOKL
  • [4] Fuzzy bounded linear operators
    Bag, T
    Samanta, SK
    [J]. FUZZY SETS AND SYSTEMS, 2005, 151 (03) : 513 - 547
  • [5] Bag T., 2003, J Fuzzy Math, V11, P687
  • [6] Statistical metrics
    Menger, K
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1942, 28 : 535 - 537
  • [7] Schweizer B., 2011, Probabilistic Metric Spaces
  • [8] Schweizer B., 1960, Pac. J. Math, V10, P314, DOI [10.2140/pjm.1960.10.313, DOI 10.2140/PJM.1960.10.313]