Investigation of the stability problem for the critical cases of the Newtonian many-body problem

被引:0
|
作者
Grebenicov, EA [1 ]
Kozak-Skoworodkin, D
Jakubiak, M
机构
[1] RAS, Ctr Comp, Moscow, Russia
[2] Univ Podlasie, Siedlce, Poland
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
引用
收藏
页码:236 / 243
页数:8
相关论文
共 50 条
  • [31] Quantum dots and the many-body problem
    Weidenmüller, HA
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2001, 15 (10-11): : 1389 - 1403
  • [32] A NEW METHOD IN THE MANY-BODY PROBLEM
    KRASOVKSY, IV
    PERESADA, VI
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (06): : 1493 - 1505
  • [33] PERTURBATION TREATMENT OF THE MANY-BODY PROBLEM
    SWIATECKI, WJ
    PHYSICAL REVIEW, 1956, 101 (04): : 1321 - 1325
  • [34] APPLICATION OF TRIDIAGONALIZATION TO THE MANY-BODY PROBLEM
    MANCINI, JD
    MATTIS, DC
    PHYSICAL REVIEW B, 1983, 28 (10): : 6061 - 6063
  • [35] THE RELATIVISTIC NUCLEAR MANY-BODY PROBLEM
    SEROT, BD
    WALECKA, JD
    ADVANCES IN NUCLEAR PHYSICS, 1986, 16 : 1 - 320
  • [36] THE COVARIANT MANY-BODY PROBLEM IN QUANTUMELECTRODYNAMICS
    BARUT, AO
    JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (04) : 1091 - 1095
  • [37] SYMMETRY OF SOLUTIONS IN THE MANY-BODY PROBLEM
    LUKJANOV, LG
    ASTRONOMICHESKII ZHURNAL, 1978, 55 (06): : 1293 - 1300
  • [38] Convexity and the quantum many-body problem
    Huu-Tai, P. Chau
    Van Isacker, P.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (20)
  • [39] On the Quadratization of the Integrals for the Many-Body Problem
    Ying, Yu
    Baddour, Ali
    Gerdt, Vladimir P.
    Malykh, Mikhail
    Sevastianov, Leonid
    MATHEMATICS, 2021, 9 (24)
  • [40] MANY-BODY PROBLEM WITH STRONG FORCES
    JASTROW, R
    PHYSICAL REVIEW, 1955, 98 (05): : 1479 - 1484