A full characterization of stabilizability of bimodal piecewise linear systems with scalar inputs

被引:24
作者
Camlibel, M. K. [1 ,2 ]
Heemels, W. P. M. H. [3 ]
Schumacher, J. M. [4 ]
机构
[1] Univ Groningen, Dept Math, NL-9700 AV Groningen, Netherlands
[2] Dogus Univ, Dept Elect & Comp Engn, TR-34722 Istanbul, Turkey
[3] Eindhoven Univ Technol, Dept Mech Engn, NL-5600 MB Eindhoven, Netherlands
[4] Tilburg Univ, Dept Econometr & Operat Res, NL-5000 LE Tilburg, Netherlands
关键词
controllability; stabilizability; piecewise linear systems; bimodal systems;
D O I
10.1016/j.automatica.2007.09.012
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper studies open-loop stabilization problem for bimodal systems with continuous vector field. It is based on the earlier work of the authors on the controllability problem for the same class of systems. A full characterization of stabilizability is established by presenting algebraic necessary and sufficient conditions. It is also shown that controllability implies stabilizability for these systems in a very similar fashion to the linear case. (c) 2008 Published by Elsevier Ltd.
引用
收藏
页码:1261 / 1267
页数:7
相关论文
共 16 条
[1]   A 9-FOLD CANONICAL DECOMPOSITION FOR LINEAR-SYSTEMS [J].
ALING, H ;
SCHUMACHER, JM .
INTERNATIONAL JOURNAL OF CONTROL, 1984, 39 (04) :779-805
[2]   Complexity of stability and controllability of elementary hybrid systems [J].
Blondel, VD ;
Tsitsiklis, JN .
AUTOMATICA, 1999, 35 (03) :479-489
[3]   Popov-Belevitch-Hautus type controllability tests for linear complementarity systems [J].
Camlibel, M. Kanat .
SYSTEMS & CONTROL LETTERS, 2007, 56 (05) :381-387
[4]  
Camlibel MK, 2004, LECT NOTES COMPUT SC, V2993, P250
[5]  
CAMLIBEL MK, 2008, IN PRESS IEEE T AUTO
[6]  
CAMLIBEL MK, 2003, P 42 IEEE C DEC CONT
[7]  
Desoer CA., 1975, FEEDBACK SYSTEMS INP
[8]  
Hassibi A, 1998, P AMER CONTR CONF, P3659, DOI 10.1109/ACC.1998.703296
[9]  
HAUTUS MLJ, 1969, P K NED AKAD A MATH, V72, P443
[10]  
Lutkepohl H., 1996, HDB MATRICES