Single-layer crystalline phases of antimony: Antimonenes

被引:286
作者
Akturk, O. Uzengi [1 ]
Ozcelik, V. Ongun [2 ,3 ]
Ciraci, S. [4 ]
机构
[1] Adnan Menderes Univ, Dept Phys, TR-09100 Aydin, Turkey
[2] Bilkent Univ, UNAM, Natl Nanotechnol Res Ctr, TR-06800 Ankara, Turkey
[3] Bilkent Univ, Inst Mat Sci & Nanotechnol, TR-06800 Ankara, Turkey
[4] Bilkent Univ, Dept Phys, TR-06800 Ankara, Turkey
关键词
ELECTRONIC-STRUCTURE; ADSORPTION;
D O I
10.1103/PhysRevB.91.235446
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The pseudolayered character of 3D bulk crystals of antimony has led us to predict its 2D single-layer crystalline phase named antimonene in a buckled honeycomb structure like silicene. Sb atoms also form an asymmetric washboard structure like black phospherene. Based on an extensive analysis comprising ab initio phonon and finite-temperature molecular dynamics calculations, we show that these two single-layer phases are robust and can remain stable at high temperatures. They are nonmagnetic semiconductors with band gaps ranging from 0.3 eV to 1.5 eV, and are suitable for 2D electronic applications. The washboard antimonene displays strongly directional mechanical properties, which may give rise to a strong influence of strain on the electronic properties. Single-layer antimonene phases form bilayer and trilayer structures with wide interlayer spacings. In multilayers, this spacing is reduced and eventually the structure changes to 3D pseudolayered bulk crystals. The zigzag and armchair nanoribbons of the antimonene phases have fundamental band gaps derived from reconstructed edge states and display a diversity of magnetic and electronic properties depending on their width and edge geometry. Their band gaps are tunable with the widths of the nanoribbons. When grown on substrates, such as germanene or Ge(111), the buckled antimonene attains a significant influence of substrates.
引用
收藏
页数:10
相关论文
共 35 条
[1]   PHON: A program to calculate phonons using the small displacement method [J].
Alfe, Dario .
COMPUTER PHYSICS COMMUNICATIONS, 2009, 180 (12) :2622-2633
[2]   Stable, Single-Layer MX2 Transition-Metal Oxides and Dichalcogenides in a Honeycomb-Like Structure [J].
Ataca, C. ;
Sahin, H. ;
Ciraci, S. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (16) :8983-8999
[3]   A Comparative Study of Lattice Dynamics of Three- and Two-Dimensional MoS2 [J].
Ataca, C. ;
Topsakal, M. ;
Akturk, E. ;
Ciraci, S. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (33) :16354-16361
[4]   Functionalization of Single-Layer MoS2 Honeycomb Structures [J].
Ataca, C. ;
Ciraci, S. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (27) :13303-13311
[5]   CRYSTAL STRUCTURE OF ANTIMONY AT 4.2, 78 AND 298 DEGREES K [J].
BARRETT, CS ;
CUCKA, P ;
HAEFNER, K .
ACTA CRYSTALLOGRAPHICA, 1963, 16 (06) :451-&
[6]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[7]   Two- and One-Dimensional Honeycomb Structures of Silicon and Germanium [J].
Cahangirov, S. ;
Topsakal, M. ;
Akturk, E. ;
Sahin, H. ;
Ciraci, S. .
PHYSICAL REVIEW LETTERS, 2009, 102 (23)
[8]   Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials [J].
Coleman, Jonathan N. ;
Lotya, Mustafa ;
O'Neill, Arlene ;
Bergin, Shane D. ;
King, Paul J. ;
Khan, Umar ;
Young, Karen ;
Gaucher, Alexandre ;
De, Sukanta ;
Smith, Ronan J. ;
Shvets, Igor V. ;
Arora, Sunil K. ;
Stanton, George ;
Kim, Hye-Young ;
Lee, Kangho ;
Kim, Gyu Tae ;
Duesberg, Georg S. ;
Hallam, Toby ;
Boland, John J. ;
Wang, Jing Jing ;
Donegan, John F. ;
Grunlan, Jaime C. ;
Moriarty, Gregory ;
Shmeliov, Aleksey ;
Nicholls, Rebecca J. ;
Perkins, James M. ;
Grieveson, Eleanor M. ;
Theuwissen, Koenraad ;
McComb, David W. ;
Nellist, Peter D. ;
Nicolosi, Valeria .
SCIENCE, 2011, 331 (6017) :568-571
[9]   Silicon and III-V compound nanotubes: Structural and electronic properties [J].
Durgun, E ;
Tongay, S ;
Ciraci, S .
PHYSICAL REVIEW B, 2005, 72 (07)
[10]   Dimer formation in monolayer antimony films deposited at room temperature on Si(100)-2 × 1 [J].
Grant, M.W. ;
Lyman, P.F. ;
Hoogenraad, J.H. ;
Seiberling, L.E. .
Surface Science, 1992, 279 (1-2)