Approximations and well-posedness in multicriteria games

被引:33
作者
Morgan, J [1 ]
机构
[1] Univ Naples Federico II, Dipartimento Matemat & Stat, I-80126 Naples, Italy
关键词
multicriteria non cooperative non-zero sum game; epsilon-weak-multicriteria Nash equilibria; parametrically well-posedness; approximating sequence; sequentially closed set-valued function;
D O I
10.1007/s10479-005-2260-9
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
First, sufficient conditions of minimal character are given which guarantee the sequential closedness of the set-valued function defined by the parametric weak-multicriteria Nash equilibria of a parametric multicriteria game, that is to say: a convergent sequence of parametric weak-multicriteri a Nash equilibria, corresponding to an approximate value of the parameter x(n), converges to a weak-multicriteria Nash equilibrium corresponding to the limit value x of the sequence (x(n))(n). Then, approximating sequences and parametrically well-posedness for a multicriteria game are introduced and investigated.
引用
收藏
页码:257 / 268
页数:12
相关论文
共 47 条
[11]  
DELPRETE I, 2003, J INEQUALITIES PURE, V4
[12]  
Dontchev AL, 1993, Lecture Notes in Mathematics, V1543
[13]   Core solutions in vector-valued games [J].
Fernández, FR ;
Hinojosa, MA ;
Puerto, J .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2002, 112 (02) :331-360
[14]  
FERNANDEZ FR, 1998, J OPTIMIZATION THEOR, V99, P195
[15]   SOLUTION CONCEPTS IN 2-PERSON MULTICRITERIA GAMES [J].
GHOSE, D ;
PRASAD, UR .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1989, 63 (02) :167-189
[16]  
GHOSE DB, 1991, J OPTIMIZATION THEOR, V68, P468
[17]   Extended well-posedness properties of vector optimization problems [J].
Huang, XX .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2000, 106 (01) :165-182
[18]   Pointwise well-posedness of perturbed vector optimization problems in a vector-valued variational principle [J].
Huang, XX .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2001, 108 (03) :671-684
[19]  
Kuratowski K., 1968, Topology
[20]   Well-posedness for optimization problems with constraints defined by variational inequalities having a unique solution [J].
Lignola, MB ;
Morgan, J .
JOURNAL OF GLOBAL OPTIMIZATION, 2000, 16 (01) :57-67