Dynamic relaxation of topological defect at Kosterlitz-Thouless phase transition

被引:1
|
作者
Qin, X. P. [1 ,2 ]
Zheng, B. [1 ]
Zhou, N. J. [1 ]
机构
[1] Zhejiang Univ, Dept Phys, Hangzhou 310027, Zhejiang, Peoples R China
[2] Zhejiang Univ Sci & Technol, Sch Sci, Hangzhou 310023, Zhejiang, Peoples R China
关键词
2-DIMENSIONAL XY MODEL; NONEQUILIBRIUM CRITICAL-DYNAMICS; CRITICAL-BEHAVIOR; SYSTEM; SIMULATIONS; MOTION; FIELD;
D O I
10.1088/1751-8113/44/34/345005
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
With Monte Carlo methods we study the dynamic relaxation of a vortex state at the Kosterlitz-Thouless phase transition of the two-dimensional XY model. A local pseudo-magnetization is introduced to characterize the symmetric structure of the dynamic systems. The dynamic scaling behavior of the pseudomagnetization and Binder cumulant is carefully analyzed, and the critical exponents are determined. To illustrate the dynamic effect of the topological defect, similar analysis for the dynamic relaxation with a spin-wave initial state is also performed for comparison. We demonstrate that a limited amount of quenched disorder in the core of the vortex state may alter the dynamic universality class. Furthermore, theoretical calculations based on the long-wave approximation are presented.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Dynamic simulations of the Kosterlitz-Thouless phase transition
    Zheng, B
    Schulz, M
    Trimper, S
    PHYSICAL REVIEW E, 1999, 59 (02): : R1351 - R1354
  • [2] Dynamic simulations of the Kosterlitz-Thouless phase transition
    Zheng, B.
    Schulz, M.
    Trimper, S.
    Physical Review E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1999, 59 (2-A):
  • [3] Nonequilibrium relaxation analysis of Kosterlitz-Thouless phase transition
    Ozeki, Y
    Ogawa, K
    Ito, N
    PHYSICAL REVIEW E, 2003, 67 (02): : 267021 - 267025
  • [4] Kosterlitz-Thouless phase and Zd topological quantum phase
    Zarei, Mohammad Hossein
    PHYSICAL REVIEW B, 2020, 101 (23)
  • [5] THE SUPERSYMMETRIC KOSTERLITZ-THOULESS PHASE-TRANSITION
    DORIA, MM
    LIFA, Y
    NUCLEAR PHYSICS B, 1986, 270 (04) : 519 - 535
  • [6] Scaling theory of the Kosterlitz-Thouless phase transition
    Zuo, Zhiyao
    Yin, Shuai
    Cao, Xuanmin
    Zhong, Fan
    PHYSICAL REVIEW B, 2021, 104 (21)
  • [7] IS THE KOSTERLITZ-THOULESS TRANSITION EXOTIC
    SHENOY, SR
    HELVETICA PHYSICA ACTA, 1992, 65 (2-3): : 477 - 478
  • [8] EFFECTS OF DISORDER IN THE KOSTERLITZ-THOULESS PHASE-TRANSITION
    JOSE, JV
    PHYSICA B & C, 1981, 107 (1-3): : 493 - 494
  • [9] KOSTERLITZ-THOULESS PHASE-TRANSITION IN A SYSTEM WITH PERCOLATION
    LOZOVIK, YE
    POMIRCHY, LM
    FIZIKA TVERDOGO TELA, 1993, 35 (09): : 2519 - 2524
  • [10] Geometrical and topological study of the Kosterlitz-Thouless phase transition in the XY model in two dimensions
    Bel-Hadj-Aissa, Ghofrane
    Gori, Matteo
    Franzosi, Roberto
    Pettini, Marco
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2021, 2021 (02):