Monotonicity Formula and Classification of Stable Solutions to Polyharmonic Lane-Emden Equations

被引:5
作者
Luo, Senping [1 ]
Wei, Juncheng [2 ]
Zou, Wenming [3 ]
机构
[1] Jiangxi Normal Univ, Sch Math & Stat, Nanchang 330022, Jiangxi, Peoples R China
[2] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
[3] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
基金
中国国家自然科学基金; 加拿大自然科学与工程研究理事会;
关键词
SEMILINEAR ELLIPTIC-EQUATIONS; SINGULAR SOLUTIONS; POSITIVE SOLUTIONS; LOCAL BEHAVIOR; REGULARITY; DOMAINS;
D O I
10.1093/imrn/rnab212
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider polyharmonic Lane-Emden equations (-Delta)(m)u = vertical bar u vertical bar(p-1)u, in R-n, where m >= 3. We classify the stable or stable outside a compact set solutions when m = 3 or 4 for any dimensions and when m >= 5 for large dimensions. In the process, we exhibit the general Joseph-Lundgren exponent (including both local and nonlocal cases) in a concise form and prove related properties. The key ingredient of the proof of the classification is a monotonicity formula for general polyharmonic equations, which may have application in regularity theory for higher-order elliptic equations.
引用
收藏
页码:16902 / 16953
页数:52
相关论文
共 34 条
  • [1] Bound state solutions for the supercritical fractional Schrodinger equation
    Ao, Weiwei
    Chan, Hardy
    del Mar Gonzalez, Maria
    Wei, Juncheng
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 193 (193)
  • [2] ON HIGHER-DIMENSIONAL SINGULARITIES FOR THE FRACTIONAL YAMABE PROBLEM: A NONLOCAL MAZZEO-PACARD PROGRAM
    Ao, Weiwei
    Chan, Hardy
    Delatorre, Azahara
    Fontelos, Marco A.
    del Mar Gonzalez, Maria
    Wei, Juncheng
    [J]. DUKE MATHEMATICAL JOURNAL, 2019, 168 (17) : 3297 - 3411
  • [3] Existence of positive weak solutions for fractional Lane-Emden equations with prescribed singular sets
    Ao, Weiwei
    Chan, Hardy
    del Mar Gonzalez, Maria
    Wei, Juncheng
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2018, 57 (06)
  • [5] Stable solutions to semilinear elliptic equations are smooth up to dimension 9
    Cabre, Xavier
    Ros-Oton, Xavier
    Figalli, Alessio
    Serra, Joaquim
    [J]. ACTA MATHEMATICA, 2020, 224 (02) : 187 - 252
  • [6] Stable Solutions to Some Elliptic Problems: Minimal Cones, the Allen-Cahn Equation, and Blow-Up Solutions
    Cabre, Xavier
    Poggesi, Giorgio
    [J]. GEOMETRY OF PDES AND RELATED PROBLEMS, 2018, 2220 : 1 - 45
  • [7] Boundedness of Stable Solutions to Semilinear Elliptic Equations: A Survey
    Cabre, Xavier
    [J]. ADVANCED NONLINEAR STUDIES, 2017, 17 (02) : 355 - 368
  • [8] Regularity of Stable Solutions up to Dimension 7 in Domains of Double Revolution
    Cabre, Xavier
    Ros-Oton, Xavier
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2013, 38 (01) : 135 - 154
  • [9] Regularity of Minimizers of Semilinear Elliptic Problems Up to Dimension 4
    Cabre, Xavier
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2010, 63 (10) : 1362 - 1380
  • [10] ASYMPTOTIC SYMMETRY AND LOCAL BEHAVIOR OF SEMILINEAR ELLIPTIC-EQUATIONS WITH CRITICAL SOBOLEV GROWTH
    CAFFARELLI, LA
    GIDAS, B
    SPRUCK, J
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1989, 42 (03) : 271 - 297