Subdivision into i-packings and S-packing chromatic number of some lattices

被引:17
作者
Gastineau, Nicolas [1 ]
Kheddouci, Hamamache [2 ]
Togni, Olivier [1 ]
机构
[1] Univ Bourgogne, LE2I, UMR 6306, CNRS, F-21078 Dijon, France
[2] Univ Lyon 1, CNRS, LIRIS, UMR5205, F-69622 Villeurbanne, France
关键词
Packing chromatic number; i-packing; hexagonal lattice; square lattice; triangular lattice; distance coloring; GRAPHS; COLORINGS;
D O I
10.26493/1855-3974.436.178
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An i-packing in a graph G is a set of vertices at pairwise distance greater than i. For a nondecreasing sequence of integers S = (s(1), s(2),...), the S-packing chromatic number of a graph G is the least integer k such that there exists a coloring of G into k colors where each set of vertices colored i, i = 1,..., k, is an s(i)-packing. This paper describes various subdivisions of an i-packing into j-packings (j>i) for the hexagonal, square and triangular lattices. These results allow us to bound the S-packing chromatic number for these graphs, with more precise bounds and exact values for sequences S = (s(i), i epsilon N*), s(i) = d+[(i-1)/n].
引用
收藏
页码:331 / 354
页数:24
相关论文
共 15 条
[11]  
Korze D, 2014, ARS MATH CONTEMP, V7, P13
[12]   A survey on the distance-colouring of graphs [J].
Kramer, Florica ;
Kramer, Horst .
DISCRETE MATHEMATICS, 2008, 308 (2-3) :422-426
[13]  
SEVCIKOVA A, 2001, DISTANT CHROM UNPUB
[14]  
Soukal R., 2010, ELECTRON J COMB, V17, P447, DOI DOI 10.37236/466
[15]   On packing colorings of distance graphs [J].
Togni, Olivier .
DISCRETE APPLIED MATHEMATICS, 2014, 167 :280-289