Subdivision into i-packings and S-packing chromatic number of some lattices

被引:17
作者
Gastineau, Nicolas [1 ]
Kheddouci, Hamamache [2 ]
Togni, Olivier [1 ]
机构
[1] Univ Bourgogne, LE2I, UMR 6306, CNRS, F-21078 Dijon, France
[2] Univ Lyon 1, CNRS, LIRIS, UMR5205, F-69622 Villeurbanne, France
关键词
Packing chromatic number; i-packing; hexagonal lattice; square lattice; triangular lattice; distance coloring; GRAPHS; COLORINGS;
D O I
10.26493/1855-3974.436.178
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An i-packing in a graph G is a set of vertices at pairwise distance greater than i. For a nondecreasing sequence of integers S = (s(1), s(2),...), the S-packing chromatic number of a graph G is the least integer k such that there exists a coloring of G into k colors where each set of vertices colored i, i = 1,..., k, is an s(i)-packing. This paper describes various subdivisions of an i-packing into j-packings (j>i) for the hexagonal, square and triangular lattices. These results allow us to bound the S-packing chromatic number for these graphs, with more precise bounds and exact values for sequences S = (s(i), i epsilon N*), s(i) = d+[(i-1)/n].
引用
收藏
页码:331 / 354
页数:24
相关论文
共 15 条
[1]  
Ekstein J., 2010, ARXIV10032291V1
[2]   Acyclic and k-distance coloring of the grid [J].
Fertin, G ;
Godard, E ;
Raspaud, A .
INFORMATION PROCESSING LETTERS, 2003, 87 (01) :51-58
[3]   Complexity of the packing coloring problem for trees [J].
Fiala, Jiri ;
Golovach, Petr A. .
DISCRETE APPLIED MATHEMATICS, 2010, 158 (07) :771-778
[4]   The packing chromatic number of infinite product graphs [J].
Fiala, Jiri ;
Klavzar, Sandi ;
Lidicky, Bernard .
EUROPEAN JOURNAL OF COMBINATORICS, 2009, 30 (05) :1101-1113
[5]   On the packing chromatic number of some lattices [J].
Finbow, Arthur S. ;
Rall, Douglas F. .
DISCRETE APPLIED MATHEMATICS, 2010, 158 (12) :1224-1228
[6]   Dichotomies properties on computational complexity of S-packing coloring problems [J].
Gastineau, Nicolas .
DISCRETE MATHEMATICS, 2015, 338 (06) :1029-1041
[7]  
Goddard W, 2008, ARS COMBINATORIA, V86, P33
[8]   THE S-PACKING CHROMATIC NUMBER OF A GRAPH [J].
Goddard, Wayne ;
Xu, Honghai .
DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2012, 32 (04) :795-806
[9]   A note on S-packing colorings of lattices [J].
Goddard, Wayne ;
Xu, Honghai .
DISCRETE APPLIED MATHEMATICS, 2014, 166 :255-262
[10]  
Jacko P., 2005, Discuss. Math. Graph Theory, V25, P151