PERIODIC SOLUTIONS TO A PERTURBED RELATIVISTIC KEPLER PROBLEM

被引:11
作者
Boscaggin, Alberto [1 ]
Dambrosio, Walter [1 ]
Feltrin, Guglielmo [2 ]
机构
[1] Univ Torino, Dept Math Giuseppe Peano, Via Carlo Alberto 10, I-10123 Turin, Italy
[2] Univ Udine, Dept Math Comp Sci & Phys, Via Sci 206, I-33100 Udine, Italy
关键词
relativistic Kepler problem; periodic solutions; invariant tori; nearly integrable Hamiltonian systems; action-angle coordinates; HAMILTONIAN-SYSTEMS; PERTURBATIONS; PARTICLE; SYMMETRY; MOTIONS; FIELD;
D O I
10.1137/20M1333547
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the perturbed relativistic Kepler problem d/dt (m((x)overdot)/root 1 - vertical bar((x)overdot)vertical bar(2)/c(2)) = -alpha x/vertical bar x vertical bar(3) + epsilon del U-x(t, x), x is an element of R-2 \ {0}, where m, alpha > 0, where c is the speed of light, and U(t, x) is a function T-periodic in the first variable. For epsilon > 0 sufficiently small, we prove the existence of T-periodic solutions with prescribed winding number, bifurcating from invariant tori of the unperturbed problem.
引用
收藏
页码:5813 / 5834
页数:22
相关论文
共 32 条
[1]   SYMMETRY-BREAKING IN HAMILTONIAN-SYSTEMS [J].
AMBROSETTI, A ;
ZELATI, VC ;
EKELAND, I .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1987, 67 (02) :165-184
[2]   PERTURBATION OF HAMILTONIAN-SYSTEMS WITH KEPLERIAN POTENTIALS [J].
AMBROSETTI, A ;
ZELATI, VC .
MATHEMATISCHE ZEITSCHRIFT, 1989, 201 (02) :227-242
[3]   CLASSICAL SCALAR FIELD THEORIES AND RELATIVISTIC KEPLER PROBLEM [J].
ANDERSEN, CM ;
VONBAEYE.HC .
ANNALS OF PHYSICS, 1971, 62 (01) :120-&
[4]  
[Anonymous], 2005, Courant Lecture Notes in Mathematics
[5]  
[Anonymous], 2014, KAM STORY FRIENDLY I, DOI DOI 10.1142/8955
[6]  
Arnold V. I., 1989, Mathematical Methods of Classical Mechanics, V2nd edn
[7]   Regularized variational principles for the perturbed Kepler problem [J].
Barutello, Vivina ;
Ortega, Rafael ;
Verzini, Gianmaria .
ADVANCES IN MATHEMATICS, 2021, 383
[8]   BIRKHOFF PERIODIC-ORBITS FOR SMALL PERTURBATIONS OF COMPLETELY INTEGRABLE HAMILTONIAN-SYSTEMS WITH CONVEX HAMILTONIANS [J].
BERNSTEIN, D ;
KATOK, A .
INVENTIONES MATHEMATICAE, 1987, 88 (02) :225-241
[9]   PERIODIC SOLUTIONS TO A FORCED KEPLER PROBLEM IN THE PLANE [J].
Boscaggin, Alberto ;
Dambrosio, Walter ;
Papini, Duccio .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 148 (01) :301-314
[10]   PERIODIC SOLUTIONS AND REGULARIZATION OF A KEPLER PROBLEM WITH TIME-DEPENDENT PERTURBATION [J].
Boscaggin, Alberto ;
Ortega, Rafael ;
Zhao, Lei .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 372 (01) :677-703