How Well Can Primal-Dual and Local-Ratio Algorithms Perform?

被引:1
作者
Borodin, Allan [1 ]
Cashman, David [2 ]
Magen, Avner [1 ]
机构
[1] Univ Toronto, Dept Comp Sci, Toronto, ON M5S 1A1, Canada
[2] Altera Corp, Toronto, ON, Canada
关键词
Local ratio; primal dual; greedy algorithms; approximation algorithms; algorithmic limitations; Steiner tree; set cover; interval scheduling; bandwidth allocation; APPROXIMATION ALGORITHM; RESOURCE-ALLOCATION; FACILITY LOCATION; STEINER PROBLEM; RELAXATIONS; SCHEMA; TREES;
D O I
10.1145/1978782.1978784
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We define an algorithmic paradigm, the stack model, that captures many primal-dual and local-ratio algorithms for approximating covering and packing problems. The stack model is defined syntactically and without any complexity limitations and hence our approximation bounds are independent of the P versus NP question. Using the stack model, we bound the performance of a broad class of primal-dual and local-ratio algorithms and supply a (log n + 1)/2 inapproximability result for set cover, a 4/3 inapproximability for min Steiner tree, and a 0.913 inapproximability for interval scheduling on two machines.
引用
收藏
页数:26
相关论文
共 62 条
  • [1] ADAMY U, 2004, P WORKSH APPR ONL AL, P211
  • [2] WHEN TREES COLLIDE - AN APPROXIMATION ALGORITHM FOR THE GENERALIZED STEINER PROBLEM ON NETWORKS
    AGRAWAL, A
    KLEIN, P
    RAVI, R
    [J]. SIAM JOURNAL ON COMPUTING, 1995, 24 (03) : 440 - 456
  • [3] AKCOGLU K, 2000, CSCE0010031 CORR, P143
  • [4] ALEKHNOVICH M, 2005, P 20 ANN IEEE C COMP
  • [5] AMZALLAG D, 2008, P IEEE INFOCOM, P700
  • [6] The power of priority algorithms for facility location and set cover
    Angelopoulos, S
    Borodin, A
    [J]. ALGORITHMICA, 2004, 40 (04) : 271 - 291
  • [7] [Anonymous], 2001, Approximation algorithms
  • [8] [Anonymous], 1992, P IND US WORKSH COOP
  • [9] SCHEDULING JOBS WITH FIXED START AND END TIMES
    ARKIN, EM
    SILVERBERG, EB
    [J]. DISCRETE APPLIED MATHEMATICS, 1987, 18 (01) : 1 - 8
  • [10] Arora S, 2002, ANN IEEE SYMP FOUND, P313, DOI 10.1109/SFCS.2002.1181954