Compression and buckling of microarchitectured Neovius-lattice

被引:32
作者
Abueidda, Diab W. [1 ]
Elhebeary, Mohamed [1 ]
Shiang, Cheng-Shen [1 ]
Abu Al-Rub, Rashid K. [2 ]
Jasiuk, Iwona M. [1 ]
机构
[1] Univ Illinois, Dept Mech Sci & Engn, 1206 West Green St, Urbana, IL 61801 USA
[2] Khalifa Univ Sci & Technol, Dept Aerosp Engn, Abu Dhabi, U Arab Emirates
基金
美国国家科学基金会;
关键词
Coating; Size effect; In-plane and out-of-plane buckling; Microlattice; Triply periodic minimal surfaces; Two-photon polymerization; INTERPENETRATING PHASE COMPOSITES; MECHANICAL-PROPERTIES; PATTERN TRANSFORMATION; MICROLATTICE MATERIALS; MICRO; STIFFNESS; STRENGTH; LIGHTWEIGHT; SIZE; OPTIMIZATION;
D O I
10.1016/j.eml.2020.100688
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
New materials with enhanced properties are of high scientific and industrial interests. Microarchitectured cellular materials possess robust mechanical properties such as high strength-to-weight ratios due to their architectures and size effect appearing in metals and ceramics. In this study, we investigate the mechanical properties of a novel microlattice based on the Neovius surface, a member of the triply periodic minimal surfaces. We show that the Neovius-microlattice exhibits high uniaxial modulus, energy absorption, and strength due to its architecture, which is free of self-intersecting elements. The polymeric Neovius-microlattice deforms locally by two mechanisms: buckling and plastic yielding, while the brittle fracture is not observed. Also, we show that the mechanical properties of the Neovius-microlattice can be enhanced further by coating it with a ceramic (alumina) layer. Additionally, the nature of instability in these architectured materials (at the micro-scale, microns in dimensions) is explored through experiments and computational modeling. The two primary instability mechanisms, out-of-plane and in-plane buckling, in cellular materials, are distinguished. Such a study can pave the path for designing cellular materials that are stiff, strong, light, and buckling-resistant. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:9
相关论文
共 94 条
[1]   Mechanical properties of 3D printed polymeric Gyroid cellular structures: Experimental and finite element study [J].
Abueidda, Diab W. ;
Elhebeary, Mohamed ;
Shiang, Cheng-Shen ;
Pang, Siyuan ;
Abu Al-Rub, Rashid K. ;
Jasiuk, Iwona M. .
MATERIALS & DESIGN, 2019, 165
[2]   Shielding effectiveness and bandgaps of interpenetrating phase composites based on the Schwarz Primitive surface [J].
Abueidda, Diab W. ;
Karimi, Pouyan ;
Jin, Jian-Ming ;
Sobh, Nahil A. ;
Jasiuk, Iwona M. ;
Ostoja-Starzewski, Martin .
JOURNAL OF APPLIED PHYSICS, 2018, 124 (17)
[3]   Acoustic band gaps and elastic stiffness of PMMA cellular solids based on triply periodic minimal surfaces [J].
Abueidda, Diab W. ;
Jasiuk, Iwona ;
Sobh, Nahil A. .
MATERIALS & DESIGN, 2018, 145 :20-27
[4]   Mechanical properties of 3D printed polymeric cellular materials with triply periodic minimal surface architectures [J].
Abueidda, Diab W. ;
Bakir, Mete ;
Abu Al-Rub, Rashid K. ;
Bergstrom, Jorgen S. ;
Sobh, Nahil A. ;
Jasiuk, Iwona .
MATERIALS & DESIGN, 2017, 122 :255-267
[5]   Modeling of Stiffness and Strength of Bone at Nanoscale [J].
Abueidda, Diab W. ;
Sabet, Fereshteh A. ;
Jasiuk, Iwona M. .
JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 2017, 139 (05)
[6]   Effective conductivities and elastic moduli of novel foams with triply periodic minimal surfaces [J].
Abueidda, Diab W. ;
Abu Al-Rub, Rashid K. ;
Dalaq, Ahmed S. ;
Lee, Dong-Wook ;
Khan, Kamran A. ;
Jasiuk, Iwona .
MECHANICS OF MATERIALS, 2016, 95 :102-115
[7]   Finite element predictions of effective multifunctional properties of interpenetrating phase composites with novel triply periodic solid shell architectured reinforcements [J].
Abueidda, Diab W. ;
Dalaq, Ahmed S. ;
Abu Al-Rub, Rashid K. ;
Younes, Hammad A. .
INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2015, 92 :80-89
[8]   Additive manufacturing and mechanical characterization of graded porosity scaffolds designed based on triply periodic minimal surface architectures [J].
Afshar, M. ;
Anaraki, A. Pourkamali ;
Montazerian, H. ;
Kadkhodapour, J. .
JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, 2016, 62 :481-494
[9]   Microarchitected Stretching-Dominated Mechanical Metamaterials with Minimal Surface Topologies [J].
Al-Ketan, Oraib ;
Rezgui, Rachid ;
Rowshan, Reza ;
Du, Huifeng ;
Fang, Nicholas X. ;
Abu Al-Rub, Rashid K. .
ADVANCED ENGINEERING MATERIALS, 2018, 20 (09)
[10]   Topology-mechanical property relationship of 3D printed strut, skeletal, and sheet based periodic metallic cellular materials [J].
Al-Ketan, Oraib ;
Rowshan, Reza ;
Abu Al-Rub, Rashid K. .
ADDITIVE MANUFACTURING, 2018, 19 :167-183