Generation of Relatively Uniformly Continuous Semigroups on Vector Lattices

被引:3
作者
Kaplin, M. [1 ,2 ]
Fijavz, M. Kramar [1 ,3 ]
机构
[1] Inst Math Phys & Mech, Jadranska 19, SI-1000 Ljubljana, Slovenia
[2] Univ Ljubljana, Fac Math & Phys, Jadranska 19, SI-1000 Ljubljana, Slovenia
[3] Univ Ljubljana, Fac Civil & Geodet Engn, Jamova Cesta 2, Ljubljana, Slovenia
关键词
vector lattice; positive operator semigroup; relative uniform convergence; generator; Hille-Yosida theorem;
D O I
10.1007/s10476-020-0025-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a Hille-Yosida type theorem for relatively uniformly continuous positive semigroups on vector lattices. We introduce the notions of relatively uniformly continuous, differentiable, and integrable functions on Double-struck capital R+. These notions allow us to study the generators of relatively uniformly continuous semigroups. Our main result provides sufficient and necessary conditions for an operator to be the generator of an exponentially order bounded, relatively uniformly continuous, positive semigroup.
引用
收藏
页码:293 / 322
页数:30
相关论文
共 14 条
  • [1] Aliprantis Charalambos D., 2007, GRADUATE STUDIES MAT
  • [2] Batkai Andras, 2017, Positive Operator Semigroups: From Finite to Infinite Dimensions, V257
  • [3] Engel Klaus-Jochen, 2000, GRAD TEXT M, V194
  • [4] Hille E., 1948, FUNCTIONAL ANAL SEMI
  • [5] Kandi M, 2018, RELATIVELY UNIFORMLY
  • [6] Luxemburg W.A.J., 1971, RIESZ SPACES
  • [7] Luxemburg W.A. J., 1971, Nederl. Akad. Wetensch. Proc. Ser. A, V74, P422
  • [8] ARCHIMEDEAN QUOTIENT RIESZ SPACES
    LUXEMBURG, WA
    MOORE, LC
    [J]. DUKE MATHEMATICAL JOURNAL, 1967, 34 (04) : 725 - +
  • [9] Moore Jr L C, 1968, INDAG MATH, V30, P442, DOI [10.1016/S1385-7258(68)50053-2, DOI 10.1016/S1385-7258(68)50053-2]
  • [10] Peressini A., 1967, Ordered Topological Vector Spaces