On Banach spaces whose group of isometrics acts micro-transitively on the unit sphere

被引:7
作者
Cabello Sanchez, Felix [1 ,2 ]
Dantas, Sheldon [3 ]
Kadets, Vladimir [4 ]
Kim, Sun Kwang [5 ]
Lee, Han Ju [6 ]
Martin, Miguel [7 ]
机构
[1] Univ Extremadura, Dept Matemat, Badajoz 06071, Spain
[2] Univ Extremadura, IMUEx, Badajoz 06071, Spain
[3] Czech Tech Univ, Dept Math, Fac Elect Engn, Tech 2, Prague 16627 6, Czech Republic
[4] Kharkov Natl Univ, Sch Math & Comp Sci, Pl Svobody 4, UA-61022 Kharkiv, Ukraine
[5] Chungbuk Natl Univ, Dept Math, 1 Chungdae Ro, Cheongju 28644, Chungbuk, South Korea
[6] Dongguk Univ, Dept Math Educ, Seoul 04620, South Korea
[7] Univ Granada, Fac Ciencias, Dept Anal Matemat, E-18071 Granada, Spain
基金
新加坡国家研究基金会;
关键词
Banach space; Mazur rotation problem; Micro-transitivity; Norm attaining operators; Bishop-Phelps-Bollobas property; BISHOP-PHELPS-BOLLOBAS; TRANSFORMATION GROUPS; THEOREM; SERIES; EFFROS;
D O I
10.1016/j.jmaa.2020.124046
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study Banach spaces whose group of isometrics acts micro-transitively on the unit sphere. We introduce a weaker property, inherited by one-complemented subspaces, that we call uniform micro-semitransitivity. We prove a number of results about both micro-transitive and uniformly micro-semitransitive spaces. In particular, they are uniformly convex and uniformly smooth, and form a self-dual class. To this end, we relate the fact that the group of isometrics acts micro-transitively with a property of operators called the pointwise Bishop-Phelps-Bollobas property and use some known results on it. Besides, we show that if there is a non-Hilbertian non-separable Banach space with uniform micro-semitransitive (or micro-transitive) norm, then there is a non-Hilbertian separable one. Finally, we show that an L-p(mu) space is micro-transitive or uniformly micro-semitransitive only when p = 2. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:14
相关论文
共 32 条
  • [1] The Bishop-Phelps-Bolloba's theorem for operators
    Acosta, Maria D.
    Aron, Richard M.
    Garcia, Domingo
    Maestre, Manuel
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 254 (11) : 2780 - 2799
  • [2] The Bishop-Phelps-Bollobas and approximate hyperplane series properties
    Acosta, Maria D.
    Mastylo, Mieczyslaw
    Soleimani-Mourchehkhorti, Maryam
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2018, 274 (09) : 2673 - 2699
  • [3] THE BISHOP-PHELPS-BOLLOBAS THEOREM FOR BILINEAR FORMS
    Acosta, Maria D.
    Becerra-Guerrero, Julio
    Garcia, Domingo
    Maestre, Manuel
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 365 (11) : 5911 - 5932
  • [4] ANCEL FD, 1987, MICH MATH J, V34, P39
  • [5] [Anonymous], 1976, GEOMETRY BANACH SPAC
  • [6] THE BISHOP-PHELPS-BOLLOBAS VERSION OF LINDENSTRAUSS PROPERTIES A AND B
    Aron, Richard
    Choi, Yun Sung
    Kim, Sun Kwang
    Lee, Han Ju
    Martin, Miguel
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 367 (09) : 6085 - 6101
  • [7] Auerbach H., 1935, MONATSHEFTE MATH PHY, V42, P45
  • [8] Banach S., 1987, THEORY LINEAR OPERAT
  • [9] Banach spaces with a large semigroup of contractive automorphisms
    Becerra Guerrero, Julio
    Rodriguez Palacios, Angel
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 475 (01) : 642 - 667
  • [10] Becerra-Guerrero J., 2002, EXTRACTA MATH, V17, P1