SEFPN: Scale-Equalizing Feature Pyramid Network for Object Detection

被引:4
|
作者
Zhang, Zhiqiang [1 ,2 ]
Qiu, Xin [1 ]
Li, Yongzhou [1 ]
机构
[1] Chinese Acad Sci, Inst Microelect, 3 Beitucheng West Rd, Beijing 100029, Peoples R China
[2] Univ Chinese Acad Sci, 19 A Yuquan Rd, Beijing 100049, Peoples R China
关键词
object detection; feature pyramid; level imbalance; correlation convolution;
D O I
10.3390/s21217136
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Feature Pyramid Network (FPN) is used as the neck of current popular object detection networks. Research has shown that the structure of FPN has some defects. In addition to the loss of information caused by the reduction of the channel number, the features scale of different levels are also different, and the corresponding information at different abstract levels are also different, resulting in a semantic gap between each level. We call the semantic gap level imbalance. Correlation convolution is a way to alleviate the imbalance between adjacent layers; however, how to alleviate imbalance between all levels is another problem. In this article, we propose a new simple but effective network structure called Scale-Equalizing Feature Pyramid Network (SEFPN), which generates multiple features of different scales by iteratively fusing the features of each level. SEFPN improves the overall performance of the network by balancing the semantic representation of each layer of features. The experimental results on the MS-COCO2017 dataset show that the integration of SEFPN as a standalone module into the one-stage network can further improve the performance of the detector, by & SIM;1AP, and improve the detection performance of Faster R-CNN, a typical two-stage network, especially for large object detection APL & SIM;2AP.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] An improved feature pyramid network for object detection
    Zhu, Linxiang
    Lee, Feifei
    Cai, Jiawei
    Yu, Hongliu
    Chen, Qiu
    NEUROCOMPUTING, 2022, 483 : 127 - 139
  • [2] Parallel Feature Pyramid Network for Object Detection
    Kim, Seung-Wook
    Kook, Hyong-Keun
    Sun, Jee-Young
    Kang, Mun-Cheon
    Ko, Sung-Jea
    COMPUTER VISION - ECCV 2018, PT V, 2018, 11209 : 239 - 256
  • [3] Latent Feature Pyramid Network for Object Detection
    Xie, Jin
    Pang, Yanwei
    Nie, Jing
    Cao, Jiale
    Han, Jungong
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 2153 - 2163
  • [4] Gated Feature Pyramid Network for Object Detection
    Xie, Xuemei
    Liao, Quan
    Ma, Lihua
    Jin, Xing
    PATTERN RECOGNITION AND COMPUTER VISION (PRCV 2018), PT IV, 2018, 11259 : 199 - 208
  • [5] Complementary Feature Pyramid Network for Object Detection
    Xie, Jin
    Pang, Yanwei
    Pan, Jing
    Nie, Jing
    Cao, Jiale
    Han, Jungong
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2023, 19 (06)
  • [6] Multi-Scale Residual Aggregation Feature Pyramid Network for Object Detection
    Wang, Hongyang
    Wang, Tiejun
    ELECTRONICS, 2023, 12 (01)
  • [7] Pyramid attention object detection network with multi-scale feature fusion
    Chen, Xiu
    Li, Yujie
    Nakatoh, Yoshihisa
    COMPUTERS & ELECTRICAL ENGINEERING, 2022, 104
  • [8] SFPN: Semantic Feature Pyramid Network for Object Detection
    Gan, Yi
    Xu, Wei
    Su, Jianbo
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 795 - 802
  • [9] Bidirectional Matrix Feature Pyramid Network for Object Detection
    Xu, Wei
    Gan, Yi
    Su, Jianbo
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 8000 - 8007
  • [10] Attentional feature pyramid network for small object detection
    Min, Kyungseo
    Lee, Gun-Hee
    Lee, Seong-Whan
    NEURAL NETWORKS, 2022, 155 : 439 - 450