Infinitely many positive solutions for a Schrodinger-Poisson system

被引:45
作者
d'Avenia, Pietro [1 ]
Pomponio, Alessio [1 ]
Vaira, Giusi [2 ]
机构
[1] Politecn Bari, Dipartimento Matemat, I-70125 Bari, Italy
[2] SISSA, I-34014 Trieste, Italy
关键词
Non-autonomous Schrodinger-Poisson system; Perturbation method; MAXWELL EQUATIONS; STANDING WAVES; EXISTENCE;
D O I
10.1016/j.na.2011.05.057
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We are interested in the existence of infinitely many positive solutions of the Schrodinger-Poisson system {-Delta u + u + V(vertical bar z vertical bar phi u = vertical bar u vertical bar(p-1) u, x is an element of R(3) {(-)Delta phi = V(vertical bar x vertical bar)u(2), x is an element of R(3), where V(vertical bar x vertical bar) is a positive bounded function, 1 < p < 5 and V(r), r = vertical bar x vertical bar, has the following decay property: V(r) = a/r(m) + 0 (1/r(m+theta)) with a > 0, m > 3/2, theta > 0. The solutions obtained are non-radial. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:5705 / 5721
页数:17
相关论文
共 24 条
[1]   Multi-bump solitons to linearly coupled systems of nonlinear Schrodinger equations [J].
Ambrosetti, A. ;
Colorado, E. ;
Ruiz, D. .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2007, 30 (01) :85-112
[2]  
Ambrosetti A., 2005, Perturbation methods and semilinear elliptic problems on RN
[3]  
[Anonymous], 2000, Adv. Differ. Equ
[4]   Ground state solutions for the nonlinear Schrodinger-Maxwell equations [J].
Azzollini, A. ;
Pomponio, A. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 345 (01) :90-108
[5]   Concentration and compactness in nonlinear Schrodinger-Poisson system with a general nonlinearity [J].
Azzollini, A. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 249 (07) :1746-1763
[6]   On the Schrodinger-Maxwell equations under the effect of a general nonlinear term [J].
Azzollini, A. ;
d'Avenia, P. ;
Pomponio, A. .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2010, 27 (02) :779-791
[7]  
Benci V., 1998, TOPOL METHOD NONL AN, V11, P283
[8]   Positive solutions for some non-autonomous Schrodinger-Poisson systems [J].
Cerami, Giovanna ;
Vaira, Giusi .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 248 (03) :521-543
[9]   Standing waves in the Maxwell-Schrodinger equation and an optimal configuration problem [J].
D'Aprile, T ;
Wei, JC .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2006, 25 (01) :105-137
[10]   Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrodinger-Maxwell equations [J].
D'Aprile, T ;
Mugnai, D .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2004, 134 :893-906