Korpelevich's method for variational inequality problems in Banach spaces

被引:115
作者
Iusem, Alfredo N. [1 ]
Nasri, Mostafa [1 ]
机构
[1] Inst Matematica Pura & Aplicada, BR-22460320 Rio De Janeiro, Brazil
关键词
Bregman function; Bregman projection; Korpelevich's method; Variational inequality problem; CONVERGENCE; ALGORITHM; OPERATORS; POINT; GAMES;
D O I
10.1007/s10898-010-9613-x
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We propose a variant of Korpelevich's method for solving variational inequality problems with operators in Banach spaces. A full convergence analysis of the method is presented under reasonable assumptions on the problem data.
引用
收藏
页码:59 / 76
页数:18
相关论文
共 43 条
[1]  
Alber Y.I., 1996, LECT NOTES PURE APPL, P15
[2]  
Alber YI, 2002, TAIWAN J MATH, V6, P323
[4]   Interior projection-like methods for monotone variational inequalities [J].
Auslender, A ;
Teboulle, M .
MATHEMATICAL PROGRAMMING, 2005, 104 (01) :39-68
[5]  
Balaj M, 2010, SPRINGER SER OPTIM A, V35, P201, DOI 10.1007/978-1-4419-0158-3_15
[6]  
Bao TQ, 2005, NONCONVEX OPTIM, V77, P113
[7]  
BAO TQ, 2006, ACTA MATH VIETNAMICA, V31, P83
[8]  
Bertsekas D.P., 1989, PARALLEL DISTRIBUTED
[9]   A differential game of joint implementation of environmental projects [J].
Breton, M ;
Zaccour, G ;
Zahaf, M .
AUTOMATICA, 2005, 41 (10) :1737-1749
[10]  
Butnariu D., 2000, Totally convex functions for fixed points computation and infinite dimensional optimization